轻量化PP/MCHGB/POE复合材料的制备与性能研究

李依鹏, 董庭轩, 李快, 张栋, 郭生伟, 李丹, 王固霞

PDF(3294 KB)
PDF(3294 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (04) : 1-7. DOI: 10.15925/j.cnki.issn1005-3360.2024.04.001
理论与研究

轻量化PP/MCHGB/POE复合材料的制备与性能研究

作者信息 +

Preparation and Performance Research of Lightweight PP/MCHGB/POE Composites

Author information +
History +

摘要

文章采用多种硅烷偶联剂对空心玻璃微珠(HGB)进行改性,改善HGB与聚丙烯(PP)的界面相容性,并探究了改性HGB的最大添加量,同时引入低密度聚烯烃弹性体(POE)对PP进行增韧。结果表明:经过偶联剂改性后的HGB与PP相容性好,且提升了复合材料的热稳定性,其中以乙烯基三甲氧基硅烷(A-171)改性效果最佳。与未改性的PP/HGB复合材料相比,PP/A-171-HGB的拉伸强度和弯曲强度分别提升了4.02 MPa和9.28 MPa,密度下降至0.902 g/cm3。当添加10%的改性HGB和15%的POE时,可保证复合材料刚性和韧性的平衡,相比未改性的PP/HGB复合材料,其断裂伸长率提升了73.4%,且密度可降至0.864 g/cm3

Abstract

A variety of silane coupling agents were used to modify hollow glass beads (HGB) to improve the interface compatibility between HGB and polypropylene (PP), and the maximum addition amount of modified HGB was explored. At the same time, low density polyolefin elastomer (POE) was introduced to toughen PP. The results show that the HGB modified by coupling agents has good compatibility with PP and improves the thermal stability of the composites, among which vinyl trimethoxysilane (A-171) has the best modification effect. Compared with the unmodified PP/HGB composites, the tensile strength and bending strength of PP/A-171-HGB are increased by 4.02 MPa and 9.28 MPa, respectively, and the density decreases to 0.902 g/cm3. When 10% modified HGB and 15% POE are added, the balance of rigidity and toughness of the composite can be ensured. Compared with the unmodified PP/HGB composites, the elongation at break of the composite is increased by 73.4%, and the density decreases to 0.864 g/cm3.

关键词

轻量化 / 聚丙烯 / 空心玻璃微珠 / 聚烯烃弹性体

Key words

Lightweight / Polypropylene / Hollow glass beads / POE

中图分类号

TB332

引用本文

导出引用
李依鹏 , 董庭轩 , 李快 , . 轻量化PP/MCHGB/POE复合材料的制备与性能研究. 塑料科技. 2024, 52(04): 1-7 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.001
LI Yi-peng, DONG Ting-xuan, LI Kuai, et al. Preparation and Performance Research of Lightweight PP/MCHGB/POE Composites[J]. Plastics Science and Technology. 2024, 52(04): 1-7 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.04.001

参考文献

1
SHAN Z, QIN S, LIU Q, et al. Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry[J]. International Journal of Precision Engineerring Manufacturing, 2012, 13: 1095-1100.
2
DORNFELD D A. Moving towards green and sustainable manufacturing[J]. IInternational Journal of Precision Engineerring Manufacturing, 2014, 1: 63-66.
3
张垚,张世双,姜曙,等.利用发动机余热驱动的汽车制冷空调系统[J].节能,2022,41(9):30-32.
4
KORONIS G, SILVA A, FONTUL M. Green composites: A review of adequate materials for automotive applications[J]. Composites Part B Engineering, 2013, 44: 120-127.
5
CHEAH L, HEYWOOD J. Meeting US passenger vehicle fuel economy standards in 2016 and beyond[J]. Energy Policy, 2011, 39: 454-466.
6
PARK D H, KWON H H. Development of warm forming parts for automotive body dash panel using AZ31B magnesium alloy sheets[J]. International Journal of Precision Engineerring Manufacturing, 2015, 16: 2159-2165.
7
赵体鹏,莫荣强,万虎.空心玻璃微珠改性低密度PA6材料研究[J].广东化工,2021,48(20):91-93, 90.
8
GAO J, WANG J B, XU H Y, et al. Preparation and properties of hollow glass bead filled silicone rubber foams with low thermal conductivity[J]. Materials & Design, 2013, 46: 491-496.
9
LIANG J Z. Estimation of thermal conductivity for polypropylene/hollow glass bead composites[J]. Composites Part B: Engineering, 2014, 56: 431-434.
10
穆洪帅,宋大龙,肖同亮,等.硅烷偶联剂对炭黑补强IR性能的影响[J].特种橡胶制品,2022,43(6):23-26, 43.
11
黄虹,李道喜,明浩,等.空心玻璃微珠对碳纤维增强聚丙烯性能的影响研究[J].工程塑料应用,2012,40(4):80-83.
12
孙佳丽,杨琴,邱小魁,等.硅烷偶联剂在玻纤复合材料中的应用及发展[J].有机硅材料,2022,36(4):55-59.
13
王海燕,党智敏,武晋萍,等.KH550硅烷偶联剂对复合材料结构和介电性能影响[J].功能材料,2006(7):1091-1093, 1097.
14
吉祥波,鲜晓斌,唐贤臣,等.硅烷偶联剂KH550对Parylene C膜与金属铝基体结合强度的影响[J].高分子材料科学与工程,2012,28(3):57-59.
15
傅强,钱之杨,赵梅.硅烷偶联剂KH-550的GC/MS研究[J].现代科学仪器,2000(2):13-14.
16
彭丽芬,柳雷,陈伟,等.空心玻璃微珠表面改性对环氧树脂复合材料性能影响研究[J].化学工程与装备,2020(2):41-43.
17
CHEN L, CAO B, GUO X, et al. Realizing simultaneous high-temperature strength and low-temperature elongation in polyolefin elastomer toughened polypropylene via controlling the dispersed phase size[J]. Journal of Applied Polymer Science, 2023, 140(8): e53537-e53547.
18
王浩博,李传强.玻璃表面功能化改性技术的现状与发展[J].中国材料进展,2022,41(8):635-644.
19
王宁,汪光辉,柳雷,等.空心玻璃微珠表面改性及其应用研究进展[J].当代化工,2023,52(6):1436-1441.
20
刘浩,聂晨晨,谢贵明,等.聚合物从表面接枝改性无机粒子的进展[J].塑料,2022,51(3):66-72.
21
PATIL A G, ANANDHAN S. Influence of planetary ball milling parameters on the mechanochemical activation of fly ash[J]. Powder Technology, 2015, 281: 151-158.
22
SHER F, YAQOOB A, SAEED F, et al. Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation[J]. Energy, 2020, 209: 118444-118456.
23
高翔.空心玻璃微珠对膨胀阻燃聚丙烯材料的阻燃协效研究[J].塑料科技,2021,49(9):43-46.
24
WANG Z X, GAO D, XU W C. Effects of coupling agents on the mechanical properties of the calcium carbonate-plastic composite packaging materials[J]. Applied Mechanics and Materials, 2012, 200: 321-324.
25
DAMABI R M, RASHNO A, AHMADI S. Investigation on mechanical properties of OCC fiber-HDPE composite containing different types of coupling agents[J]. Polymers and Polymer Composites, 2015, 23(1): 29-36.
26
岳振,郑明东,毛立睿,等.PP/气化飞灰复合材料力学性能研究[J].塑料科技,2022,50(6):23-27.
27
周颖,王蒙,何玮由,等.动态硫化三元乙丙橡胶/聚丙烯橡胶:流变,结晶和动态力学性能[J].高分子材料科学与工程,2020,36(2):32-39.
28
ZHANG B, ZHONG W T, FU Z H, et al. Polyethylene/crystalline ethylene-propylene copolymer/amorphous ethylene-propylene copolymer in-reactor alloys synthesized by periodic switching polymerization process: An excellent toughener for polypropylene[J]. European Polymer Journal, 2021, DOI: 10.1016/j.eurpolymj.2021.110563.

基金

宁夏回族自治区重点研发计划(2022BDE03003)
宁夏自然科学基金项目(2023AAC03279)

评论

PDF(3294 KB)

Accesses

Citation

Detail

段落导航
相关文章

/