非洲猪瘟病毒蛋白结构及疫苗研究进展

王红帅, 谢水华, 刘建营, 郭建超, 李亮, 陈迎丰

PDF(503 KB)
PDF(503 KB)
养殖与饲料 ›› 2024, Vol. 23 ›› Issue (04) : 71-77. DOI: 10.13300/j.cnki.cn42-1648/s.2024.04.019
疾病防控

非洲猪瘟病毒蛋白结构及疫苗研究进展

作者信息 +
History +

摘要

非洲猪瘟(ASF)是由非洲猪瘟病毒(ASFV)引起的1种高致死性传染病。自ASF疫情暴发以来,ASF对全球养猪业造成巨大损失。ASFV是由许多蛋白质组成的复杂结构,这些蛋白的功能和作用机制研究尚不清楚,以及复杂的免疫逃逸机制,使得疫苗开发极具困难。为此,解析ASFV蛋白的结构和功能将有助于更清楚地了解病毒与宿主之间的相互作用,以及ASFV的复制和传播机制,有助于筛选保护性抗原,并设计更有针对性和更有效的ASF疫苗。本文总结了近年来ASFV蛋白结构功能和疫苗开发方面的研究进展和突破,以期为科学防控非洲猪瘟提供参考。

关键词

非洲猪瘟 / 非洲猪瘟病毒 / 蛋白结构 / ASF疫苗

中图分类号

S859.797

引用本文

导出引用
王红帅 , 谢水华 , 刘建营 , . 非洲猪瘟病毒蛋白结构及疫苗研究进展. 养殖与饲料. 2024, 23(04): 71-77 https://doi.org/10.13300/j.cnki.cn42-1648/s.2024.04.019

参考文献

1
ZHANG H, ZHAO S, ZHANG H, et al. Vaccines for African swine fever: an update[J/OL]. Frontiers in microbiology, 2023, 14: 1139494[2023-12-03].
2
SUN H, NIU Q, YANG J, et al. Transcriptome profiling reveals features of immune response and metabolism of acutely infected, dead and asymptomatic infection of African swine fever virus in pigs[J/OL]. Frontiers in immunology, 2021,12:808545[2023-12-03].
3
ZHANG K, LI S, LIU S, et al. Spatiotemporally orchestrated interactions between viral and cellular proteins involved in the entry of African swine fever virus[J/OL]. Viruses, 2021, 13(12):2495[2023-12-03].
4
ATA EB, LI ZJ, SHI CW, et al. African swine fever virus: a raised global upsurge and a continuous threaten to pig husbandry[J/OL]. Microbial pathogenesis, 2022,167:105561[2023-12-03].
5
MATAMOROS T, ALEJO A, RODRÍGUEZ JM, et al. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration[J/OL]. mBio, 2020, 11(4):e00789-20[2023-12-03].
6
ALEJO A, MATAMOROS T, GUERRA M, et al. A proteomic atlas of the African swine fever virus particle[J/OL]. Journal of virology, 2018,92(23):e01293-18[2023-12-03].
7
LI G, LIU X, YANG M, et al. Crystal structure of African swine fever virus pS273R protease and implications for inhibitor design[J/OL]. Journal of virology, 2020, 94(10): e02125-19[2023-12-03].
8
YANG S, MIAO C, LIU W, et al. Structure and function of African swine fever virus proteins: current understanding[J/OL]. Frontiers in microbiology, 2023, 14:1043129[2023-12-03].
9
EULÁLIO A, NUNES-CORREIA I, SALAS J, et al. African swine fever virus p37 structural protein is localized in nuclear foci containing the viral DNA at early post-infection times[J]. Virus research, 2007, 130(1/2):18-27.
10
COELHO J, LEITÃO A. The African swine fever virus (ASFV) topoisomerase Ⅱ as a target for viral prevention and control[J/OL]. Vaccines, 2020,8(2):312[2023-12-03].
11
RAMIREZ-MEDINA E, VUONO EA, PRUITT S, et al. Deletion of an African swine fever virus ATP-dependent RNA helicase QP509L from the highly virulent georgia 2010 strain does not affect replication or virulence[J/OL]. Viruses, 2022, 14(11):2548[2023-12-03].
12
DU X, GAO Z Q, GENG Z, et al. Structure and biochemical characteristic of the methyltransferase (MTase) domain of RNA capping enzyme from African swine fever virus[J/OL]. Journal of virology, 2021, 95(5): e02029-20[2023-12-03].
13
YANG Y, ZHANG C, LI X, et al. Structural insight into molecular inhibitory mechanism of InsP(6) on African swine fever virus mRNA-decapping enzyme g5Rp[J/OL]. Journal of virology, 2022, 96(10):e0190521[2023-12-03].
14
ROMAGNOLI A, D'AGOSTINO M, ARDICCIONI C, et al. Control of the eIF4E activity: structural insights and pharmacological implications[J]. Cellular and molecular life sciences: CMLS, 2021, 78(21-22):6869-6885.
15
BARRADO-GIL L, DEL PUERTO A, MUÑOZ-MORENO R, et al. African swine fever virus ubiquitin-conjugating enzyme interacts with host translation machinery to regulate the host protein synthesis[J/OL]. Frontiers in microbiology, 2020, 11:622907[2023-12-03].
16
MENG K, ZHANG Y, LIU Q, et al. Structural design and assessing of recombinantly expressed African swine fever virus p72 trimer in Saccharomyces cerevisiae [J/OL]. Frontiers in microbiology, 2022, 13:802098[2023-12-03].
17
ANDRÉS G, CHARRO D, MATAMOROS T, et al. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes[J]. The journal of biological chemistry, 2020, 295(1):1-12.
18
MUÑOZ AL, TABARÉS E. Characteristics of the major structural proteins of African swine fever virus: role as antigens in the induction of neutralizing antibodies[J]. Virology, 2022, 571:46-51.
19
ZHENG W, XIA N, ZHANG J, et al. African swine fever virus structural protein p17 inhibits cGAS-STING signaling pathway through interacting with STING[J/OL]. Frontiers in immunology, 2022,13:941579[2023-12-03].
20
XIA N, WANG H, LIU X, et al. African swine fever virus structural protein p17 inhibits cell proliferation through ER stress-ROS mediated cell cycle arrest[J/OL]. Viruses, 2020, 13(1): 21[2023-12-03].
21
TNG PYL, AL-ADWANI L, PAULETTO E, et al. Capsid-specific antibody responses of domestic pigs immunized with low-virulent African swine fever virus[J/OL]. Vaccines, 2023, 11(10):1577[2023-12-03].
22
CADENAS-FERNÁNDEZ E, SÁNCHEZ-VIZCAÍNO JM, VAN DEN BORN E, et al. High doses of inactivated African swine fever virus are safe, but do not confer protection against a virulent challenge[J/OL]. Vaccines, 2021,9(3):242[2023-12-03].
23
GÓMEZ-PUERTAS P, RODRÍGUEZ F, OVIEDO JM, et al. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response[J]. Virology, 1998, 243(2):461-471.
24
NEILAN JG, ZSAK L, LU Z, et al. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection[J]. Virology, 2004, 319(2):337-342.
25
LACASTA A, BALLESTER M, MONTEAGUDO PL, et al. Expression library immunization can confer protection against lethal challenge with African swine fever virus[J]. Journal of virology, 2014, 88(22):13322-13332.
26
ARGILAGUET JM, PÉREZ-MARTÍN E, NOFRARÍAS M, et al. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies[J/OL]. PloS one, 2012, 7(9):e40942[2023-12-03].
27
MURGIA MV, MOGLER M, CERTOMA A, et al. Evaluation of an African swine fever (ASF) vaccine strategy incorporating priming with an alphavirus-expressed antigen followed by boosting with attenuated ASF virus[J]. Archives of virology, 2019, 164(2):359-370.
28
NETHERTON CL, GOATLEY LC, REIS AL, et al. Identification and immunogenicity of African swine fever virus antigens[J/OL]. Frontiers in immunology, 2019, 10:1318[2023-12-03].
29
LIU W, LI H, LIU B, et al. A new vaccination regimen using adenovirus-vectored vaccine confers effective protection against African swine fever virus in swine[J/OL]. Emerging microbes & infections, 2023,12(2):2233643[2023-12-03].
30
LIU L, WANG X, MAO R, et al. Research progress on live attenuated vaccine against African swine fever virus[J/OL]. Microbial pathogenesis, 2021, 158:105024[2023-12-03].
31
BALYSHEVA V I, PRUDNIKOVA E Y, GALNBEK T V, et al. Immunological properties of attenuated variants of African swine fever virus isolated in the Russian Federation[J]. Veterinary science, 2015, 41(2/3):178-182.
32
KING K, CHAPMAN D, ARGILAGUET JM, et al. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation[J]. Vaccine, 2011, 29(28):4593-4600.
33
ABKALLO H M, SVITEK N, ODUOR B, et al. Rapid CRISPR/Cas9 editing of genotype IX African swine fever virus circulating in eastern and central Africa[J/OL]. Frontiers in genetics, 2021, 12:733674[2023-12-03].
34
BORCA M V, HOLINKA L G, BERGGREN K A, et al. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses[J/OL]. Scientific reports, 2018, 8(1):3154[2023-12-03].
35
VELAZQUEZ-SALINAS L, RAMIREZ-MEDINA E, RAI A, et al. Development real-time PCR assays to genetically differentiate vaccinated pigs from infected pigs with the eurasian strain of African swine fever virus[J/OL]. Frontiers in veterinary science, 2021, 8:768869[2023-12-03].
36
BORCA M V, RAI A, ESPINOZA N, et al. African swine fever vaccine candidate ASFV-G-ΔI177L produced in the swine macrophage-derived cell line IPKM remains genetically stable and protective against homologous virulent challenge[J/OL]. Viruses, 2023, 15(10):2064[2023-12-03].
37
URBANO A C, FERREIRA F. African swine fever control and prevention: an update on vaccine development[J]. Emerging microbes & infections, 2022, 11(1):2021-2033.
38
BARASONA JA, CADENAS-FERNÁNDEZ E, KOSOWSKA A, et al. Safety of African swine fever vaccine candidate Lv17/WB/rie1 in wild boar: overdose and repeated doses[J/OL]. Frontiers in immunology, 2021, 12:761753[2023-12-03].

评论

PDF(503 KB)

Accesses

Citation

Detail

段落导航
相关文章

/