鲍曼不动杆菌相关耐药机制及新型治疗手段

史欣玥, 张定宇

PDF(812 KB)
PDF(812 KB)
西南医科大学学报 ›› 2025, Vol. 48 ›› Issue (1) : 97-104. DOI: 10.3969/j.issn.2096-3351.2025.01.019
综述

鲍曼不动杆菌相关耐药机制及新型治疗手段

作者信息 +

Mechanisms of Drug Resistance Associated with Acinetobacter baumannii and Treatment Progress

Author information +
History +

摘要

鲍曼不动杆菌在重症监护病房中是一种常见的多重耐药病原体,对危重患者构成显著威胁。面对有限的有效抗生素选择,鲍曼不动杆菌感染治疗面临诸多挑战,导致较高的感染率和死亡率。其耐药性归因于多种机制,包括外排泵作用、靶点突变、抗生素修饰酶的活化、生物膜形成及群体感应系统的调控。随着世界卫生组织将不动杆菌列为优先研发抗生素病原体,开发新抗生素的紧迫性显而易见。本文主要关注当前新型抗生素的开发、非传统抗菌药物的研究、潜在的疫苗以及多模式感染控制策略的推进。这些方法既是预防措施,也是应对抗生素耐药性不断升级挑战的替代治疗手段。

Abstract

Acinetobacter baumannii, a prevalent multidrug-resistant pathogen in Intensive Care Units, poses a significant threat to critically ill patients. With limited effective antibiotic options, Acinetobacter baumannii infections lead to high infection and mortality rates. Its resistance mechanisms include efflux pump activity, target mutations, activation of antibiotic-modifying enzymes, biofilm formation, and quorum sensing system regulation. Recognizing Acinetobacter as a priority for antibiotic development, this article emphasized the urgency of developing new antibiotics. It concentrated on novel antibiotic development, exploring non-traditional antimicrobial agents, potential vaccines, and advancing multimodal infection control strategies, serving as both preventive and alternative therapeutic responses to the escalating challenge of antibiotic resistance.

关键词

鲍曼不动杆菌 / 耐药机制 / 多模式感控

Key words

Acinetobacter baumannii / Drug resistance mechanism / Multi-mode sensing

中图分类号

R373.1

引用本文

导出引用
史欣玥 , 张定宇. 鲍曼不动杆菌相关耐药机制及新型治疗手段. 西南医科大学学报. 2025, 48(1): 97-104 https://doi.org/10.3969/j.issn.2096-3351.2025.01.019
Xinyue SHI, Dingyu ZHANG. Mechanisms of Drug Resistance Associated with Acinetobacter baumannii and Treatment Progress[J]. Journal of Southwest Medical University. 2025, 48(1): 97-104 https://doi.org/10.3969/j.issn.2096-3351.2025.01.019

参考文献

1
胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5): 521-530.
2
CRISTINA LM, GUIJARRO-SÁNCHEZ P, ALONSO-GARCIA I, et al. Epidemiology, resistance genomics and susceptibility of Acinetobacter species: results from the 2020 Spanish nationwide surveillance study[J]. Eurosurveillance, 2024, 29(15): 2300352.
3
DICKSTEIN Y, LELLOUCHE J, SCHWARTZ D, et al. Colistin resistance development following colistin-meropenem combination therapy versus colistin monotherapy in patients with infections caused by carbapenem-resistant organisms[J]. Clin Infect Dis, 2020, 71(10): 2599-2607.
4
罗斌, 李智伟, 王倩, 等. 耐替加环素鲍曼不动杆菌中外排泵AdeB与Bfs过表达生物膜形成的关系[J]. 河北医药, 2023, 45(22): 3399-3402, 3406.
5
陈安林, 陈娅, 陈泽慧,等. 医院感染多重耐药鲍曼不动杆菌患者死亡危险因素的Meta分析[J]. 中国感染控制杂志, 2019, 18(1): 53-58.
6
JIANG M, MU Y, LI N, et al. Carbapenem-resistant Acinetobacter baumannii from air and patients of intensive care units[J]. Pol J Microbiol, 2018, 67(3): 333-338.
7
张馨琢, 江南, 黄永茂, 等. 医院污水中碳青霉烯不敏感菌多样性及碳青霉烯耐药基因研究[J]. 西南医科大学学报, 2018, 41(2): 133-136.
8
柯舒文, 王玉莹, 李浩, 等. 生态环境中抗生素耐药性的产生、传播及影响[J]. 中国医药导报, 2023, 20(21): 49-53.
9
HERNANDO-AMADO S, BLANCO P, ALCALDE-RICO M, et al. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials[J]. Drug Resist Updat, 2016, 28: 13-27.
10
ZHENG W, HUANG Y, WU W, et al. Analysis of efflux pump system and other drug resistance related gene mutations in tigecycline-resistant Acinetobacter baumannii [J]. Comput Math Methods Med, 2023, 2023: 8611542.
11
LEE Y, YUM JH, KIM CK, et al. Role of OXA-23 and AdeABC efflux pump for acquiring carbapenem resistance in an Acinetobacter baumannii strain carrying the blaOXA-66 gene[J]. Ann Clin Lab Sci, 2010, 40(1): 43-48.
12
MAGNET S, COURVALIN P, LAMBERT T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454[J]. Antimicrob Agents Chemother, 2001, 45(12): 3375-3380.
13
JIA W, LI C, ZHANG H, et al. Prevalence of genes of OXA-23 carbapenemase and AdeABC efflux pump associated with multidrug resistance of Acinetobacter baumannii isolates in the ICU of a comprehensive hospital of Northwestern China[J]. Int J Environ Res Public Health, 2015, 12(8): 10079-10092.
14
HE X, LU F, YUAN F, et al. Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump[J]. Antimicrob Agents Chemother, 2015, 59(8): 4817-4825.
15
VERMA P, TIWARI M, TIWARI V. Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors[J]. Microb Pathog, 2021, 152: 104766.
16
MIYACHIRO MM, CONTRERAS-MARTEL C, DESSEN A. Penicillin-binding proteins (PBPs) and bacterial cell wall elongation complexes[J]. Subcell Biochem, 2019, 93: 273-289.
17
KAKUTA N, NAKANO R, NAKANO A,et al. A novel mismatched pcr-restriction fragment length polymorphism assay for rapid detection of gyra and parc mutations associated with fluoroquinolone Resistance in Acinetobacter baumannii[J]. Ann Lab Med, 2020, 40(1): 27-32.
18
王忠杰, 阙蜜, 袁喆, 等. 呼吸重症监护室患者感染耐碳青霉烯类肺炎克雷伯菌和死亡危险因素分析[J]. 西南医科大学学报, 2024, 47(2): 147-151.
19
CASTANHEIRA M, COSTELLO SE, WOOSLEY LN, et al. Evaluation of clonality and carbapenem resistance mechanisms among Acinetobacter baumannii-Acinetobacter calcoaceticus complex and Enterobacteriaceae isolates collected in European and Mediterranean countries and detection of two novel β-lactamases, GES-22 and VIM-35[J]. Antimicrob Agents Chemother, 2014, 58(12): 7358-7366.
20
石娇, 王光西, 丁曼琳, 等. 2014—2018年某三甲医院血流感染分布及革兰阴性菌耐药性分析[J]. 西南医科大学学报, 2020, 43(2): 118-123.
21
COLQUHOUN JM, FAROKHYFAR M, HUTCHESON AR, et al. OXA-23 β-Lactamase overexpression in Acinetobacter baumannii drives physiological changes resulting in new genetic vulnerabilities[J]. mBio, 2021, 12(6): e0313721.
22
瞿巧莉, 李霄, 王鹏飞, 等. 携带不同耐药基因对耐碳青霉烯类肺炎克雷伯菌适应性及毒力的影响[J]. 西部医学, 2024, 36(3): 325-332.
23
IBRAHIM S, AL-SARYI N, AL-KADMY IMS, et al. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals[J]. Mol Biol Rep, 2021, 48(10): 6987-6998.
24
ZHANG X, LI F, AWAN F, et al. Molecular epidemiology and clone transmission of carbapenem-resistant acinetobacter baumannii in icu rooms[J]. Front Cell Infect Microbiol, 2021, 11: 633817.
25
ZHAO YY, ZHU YZ, ZHANG H, et al. Molecular tracking of carbapenem-resistant Acinetobacter baumannii clinical isolates: a multicentre study over a 4-year period across eastern China[J]. J Med Microbiol, 2023, 72(2).
26
殷丽军, 武娜娜, 缪瑾, 等. 2017—2021年某儿科医院耐碳青霉烯类革兰阴性菌综合干预感控措施效果及其耐药基因[J]. 中华医院感染学杂志, 2024, 34(3): 410-415.
27
DEHBANIPOUR R, GHALAVAND Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline[J]. J Clin Pharm Ther, 2022, 47(11): 1875-1884.
28
NOVOVIĆ K, MIHAJLOVIĆ S, DINIĆ M, et al. Acinetobacter spp. porin Omp33-36: classification and transcriptional response to carbapenems and host cells[J]. PLoS One, 2018, 13(8): e0201608.
29
SHENKUTIE AM, YAO MZ, SIU GK, et al. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates[J]. Antibiotics (Basel), 2020, 9(11): E817.
30
VERSTRAETEN N, BRAEKEN K, DEBKUMARI B, et al. Living on a surface: swarming and biofilm formation[J]. Trends Microbiol, 2008, 16(10): 496-506.
31
RANJBAR A, RASOOLI I, JAHANGIRI A, et al. Specific egg yolk antibody raised to biofilm associated protein (Bap) is protective against murine pneumonia caused by Acinetobacter baumannii[J]. Sci Rep, 2022, 12: 12576.
32
NOGBOU ND, RAMASHIA M, NKAWANE GM, et al. Whole-genome sequencing of a colistin-resistant Acinetobacter baumannii strain isolated at a tertiary health facility in Pretoria, South Africa[J]. Antibiotics (Basel), 2022, 11(5): 594.
33
NIE D, HU Y, CHEN Z, et al. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection[J]. J Biomed Sci, 2020, 27(1): 26.
34
GADDY JA, TOMARAS AP, ACTIS LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells[J]. Infect Immun, 2009, 77(8): 3150-3160.
35
NIU T, GUO L, LUO Q, et al. Wza gene knockout decreases Acinetobacter baumannii virulence and affects Wzy-dependent capsular polysaccharide synthesis[J]. Virulence, 2020, 11(1): 1-13.
36
MUKHERJEE S, BASSLER BL. Bacterial quorum sensing in complex and dynamically changing environments[J]. Nat Rev Microbiol, 2019, 17: 371-382.
37
HETTA HF, AL-KADMY IMS, KHAZAAL SS, et al. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii [J]. Sci Rep, 2021, 11: 10751.
38
ZENG L, LIN F, LING B. Effect of traditional Chinese medicine monomers interfering with quorum-sensing on virulence factors of extensively drug-resistant Acinetobacter baumannii [J]. Front Pharmacol, 2023, 14: 1135180.
39
ZHONG S, HE S. Quorum sensing inhibition or quenching in Acinetobacter baumannii: the novel therapeutic strategies for new drug development[J]. Front Microbiol, 2021, 12: 558003.
40
周华, 周建英, 俞云松. 中国鲍曼不动杆菌感染诊治与防控专家共识解读[J]. 中国循证医学杂志, 2016, 16(1): 26-29.
41
KARLOWSKY JA, HACKEL MA, MCLEOD SM, et al. In vitro activity of sulbactam-durlobactam against global isolates of Acinetobacter baumannii-calcoaceticus complex collected from 2016 to 2021[J]. Antimicrob Agents Chemother, 2022, 66(9): e0078122.
42
曾玫, 夏君, 宗志勇, 等. 碳青霉烯类耐药革兰阴性菌感染的诊断、治疗及防控指南[J]. 中国感染与化疗杂志, 2024, 24(2): 135-151.
43
LENHARD JR, SMITH NM, BULMAN ZP, et al. High-dose ampicillin-sulbactam combinations combat polymyxin-resistant Acinetobacter baumannii in a hollow-fiber infection model[J]. Antimicrob Agents Chemother, 2017, 61(3): e01268-16.
44
KARVOUNIARIS M, ALMYROUDI MP, ABDUL-AZIZ MH, et al. Novel antimicrobial agents for gram-negative pathogens[J]. Antibiotics (Basel), 2023, 12(4): 761.
45
LIVERMORE DM, MUSHTAQ S, WARNER M, et al. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii [J]. Antimicrob Agents Chemother, 2016, 60(6): 3840-3844.
46
ZHANEL GG, ESQUIVEL J, ZELENITSKY S, et al. Omadacycline: a novel oral and intravenous aminomethylcycline antibiotic agent[J]. Drugs, 2020, 80(3): 285-313.
47
冯广伟. 头孢地尔对产金属β-内酰胺酶革兰阴性菌的作用现状研究[J]. 中国现代药物应用, 2024, 18(3): 170-174.
48
VIALE P, SANDROCK CE, RAMIREZ P, et al. Treatment of critically ill patients with cefiderocol for infections caused by multidrug-resistant pathogens: review of the evidence[J]. Ann Intensive Care, 2023, 13(1): 52.
49
BASSETTI M, ECHOLS R, MATSUNAGA Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial[J]. Lancet Infect Dis, 2021, 21(2): 226-240.
50
FALCONE M, TISEO G, LEONILDI A, et al. Cefiderocol- compared to colistin-based regimens for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii [J]. Antimicrob Agents Chemother, 2022, 66(5): e0214221.
51
KEAM SJ. Sulbactam/durlobactam: first approval[J]. Drugs, 2023, 83(13): 1245-1252.
52
KAYE KS, SHORR AF, WUNDERINK RG, et al. Efficacy and safety of sulbactam–durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii–calcoaceticus complex: a multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK)[J]. Lancet Infect Dis, 2023, 23(9): 1072-1084.
53
DURAND-RÉVILLE TF, GULER S, COMITA-PREVOIR J, et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii [J]. Nat Microbiol, 2017, 2: 17104.
54
ABDUL-MUTAKABBIR JC, OPOKU NS, TAN KK, et al. Determining susceptibility and potential mediators of resistance for the novel polymyxin derivative, SPR206, in Acinetobacter baumannii [J]. Antibiotics (Basel), 2024, 13(1): 47.
55
ASLAN AT, AKOVA M, PATERSON DL. Next-generation polymyxin class of antibiotics: a ray of hope illuminating a dark road[J]. Antibiotics (Basel), 2022, 11(12): 1711.
56
GORDILLO ALTAMIRANO F, FORSYTH JH, PATWA R, et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials[J]. Nat Microbiol, 2021, 6: 157-161.
57
MAJKOWSKA-SKROBEK G, MARKWITZ P, SOSNOWSKA E, et al. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance[J]. Environ Microbiol, 2021, 23(12): 7723-7740.
58
EROL HB, KASKATEPE B, YILDIZ S, et al. The effect of phage-antibiotic combination strategy on multidrug-resistant Acinetobacter baumannii biofilms[J]. J Microbiol Meth, 2023, 210: 106752.
59
SZAŁAJ N, BENEDIKTSDOTTIR A, RUSIN D, et al. Bacterial type I signal peptidase inhibitors - Optimized hits from nature[J]. Eur J Med Chem, 2022, 238: 114490.
60
ALLSOP A, BROOKS G, EDWARDS PD, et al. Inhibitors of bacterial signal peptidase: a series of 6-(substituted oxyethyl)penems[J]. J Antibiot (Tokyo), 1996, 49(9): 921-928.
61
PERSONNE Y, CURTIS MA, WAREHAM DW, et al. Activity of the type I signal peptidase inhibitor MD3 against multidrug-resistant Gram-negative bacteria alone and in combination with colistin[J]. J Antimicrob Chemother, 2014, 69(12): 3236-3243.
62
CRANEY A, ROMESBERG FE. The inhibition of type I bacterial signal peptidase: biological consequences and therapeutic potential[J]. Bioorg Med Chem Lett, 2015, 25(21): 4761-4766.
63
LIU W, WU Z, MAO C, et al. Antimicrobial peptide Cec4 eradicates the bacteria of clinical carbapenem-resistant Acinetobacter baumannii biofilm[J]. Front Microbiol, 2020, 11: 1532.
64
PENG SY, YOU RN, LAI MJ, et al. Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2[J]. Sci Rep, 2017, 7: 11477.
65
LOOD R, WINER BY, PELZEK AJ, et al. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model[J]. Antimicrob Agents Chemother, 2015, 59(4): 1983-1991.
66
FENG XR, SAMBANTHAMOORTHY K, PALYS T, et al. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii [J]. Peptides, 2013, 49: 131-137.
67
ALSAAB FM, DEAN SN, BOBDE S, et al. Computationally designed AMPs with antibacterial and antibiofilm activity against MDR Acinetobacter baumannii [J]. Antibiotics (Basel), 2023, 12(9): 1396.
68
LIM J, MYUNG H, LIM D, et al. Antimicrobial peptide thanatin fused endolysin PA90 (Tha-PA90) for the control of Acinetobacter baumannii infection in mouse model[J]. J Biomed Sci, 2024, 31(1): 36.
69
WATKINS RR. A formidable foe: carbapenem-resistant Acinetobacter baumannii and emerging nonantibiotic therapies[J]. Expert Rev Anti Infect Ther, 2018, 16(8): 591-593.
70
LEUNG V, VINCENT C, EDENS TJ, et al. Antimicrobial resistance gene acquisition and depletion following fecal microbiota transplantation for recurrent Clostridium difficile infection[J]. Clin Infect Dis, 2018, 66(3): 456-457.
71
WAN G, RUAN L, YIN Y, et al. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii [J]. Int J Nanomedicine, 2016, 11: 3789-3800.
72
LI XS, GUI R, LI J, et al. Novel multifunctional silver nanocomposite serves as a resistance-reversal agent to synergistically combat carbapenem-resistant Acinetobacter baumannii [J]. ACS Appl Mater Interfaces, 2021, 13(26): 30434-30457.
73
LIU C, CHEN K, WU Y, et al. Epidemiological and genetic characteristics of clinical carbapenem-resistant Acinetobacter baumannii strains collected countrywide from hospital intensive care units (ICUs) in China[J]. Emerg Microbes Infect, 2022, 11(1): 1730-1741.
74
ZHENG Y, XU N, PANG J, et al. Colonization with extensively drug-resistant Acinetobacter baumannii and prognosis in critically ill patients: an observational cohort study[J]. Front Med (Lausanne), 2021, 8: 667776.
75
祝司霞, 庞载元. 泛耐药鲍曼不动杆菌呼吸道定植如何管理?[J]. 中国全科医学, 2019, 22(27): 3286-3291.
76
BRINDLE T. Horizontal approaches to infection prevention: daily chlorhexidine gluconate bathing[J]. Br J Nurs, 2023, 32(11): 502-507.
77
PALLOTTO C, FIORIO M, DE ANGELIS V, et al. Daily bathing with 4% chlorhexidine gluconate in intensive care settings: a randomized controlled trial[J]. Clin Microbiol Infect, 2019, 25(6): 705-710.
78
NOTO MJ, DOMENICO HJ, BYRNE DW, et al. Chlorhexidine bathing and health care-associated infections: a randomized clinical trial[J]. JAMA, 2015, 313(4): 369-378.
79
TACCONELLI E, MAZZAFERRI F, DE SMET AM, et al. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers[J]. Clin Microbiol Infect, 2019, 25(7): 807-817.
80
KREITMANN L, HELMS J, MARTIN-LOECHES I, et al. ICU-acquired infections in immunocompromised patients[J]. Intensive Care Med, 2024, 50(3): 332-349.
81
ZENG X, WANG N, XIANG CY, et al. Peptidoglycan-associated lipoprotein contributes to the virulence of Acinetobacter baumannii and serves as a vaccine candidate[J]. Genomics, 2023, 115(2): 110590.
82
DOLLERY SJ, ZURAWSKI DV, BUSHNELL RV, et al. Whole-cell vaccine candidates induce a protective response against virulent Acinetobacter baumannii [J]. Front Immunol, 2022, 13: 941010.
83
AINSWORTH S, KETTER PM, YU JJ, et al. Vaccination with a live attenuated Acinetobacter baumannii deficient in thioredoxin provides protection against systemic Acinetobacter infection[J]. Vaccine, 2017, 35(26): 3387-3394.
84
HU Y, ZHANG X, DENG S, et al. Non-antibiotic prevention and treatment against Acinetobacter baumannii infection: are vaccines and adjuvants effective strategies?[J]. Front Microbiol, 2023, 14: 1049917.
85
HOSSEINNEZHAD-LE, DOOSTI A, SHARIFZADEH A. Novel csuC-DNA nanovaccine based on chitosan candidate vaccine against infection with Acinetobacter baumannii [J]. Vaccine, 2023, 41(13): 2170-2183.
86
YANG N, JIN X, ZHU C, et al. Subunit vaccines for Acinetobacter baumannii [J]. Front Immunol, 2022, 13: 1088130.
87
NAGHIPOUR ERAMI A, RASOOLI I, JAHANGIRI A, et al. Anti-Omp34 antibodies protect against Acinetobacter baumannii in a murine sepsis model[J]. Microb Pathog, 2021, 161: 105291.
88
RUSSO TA, BEANAN JM, OLSON R, et al. The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization[J]. Infect Immun, 2013, 81(3): 915-922.
89
王纯睿, 袁喆, 周泓羽, 等. 重症监护病房肺炎克雷伯菌临床特点及耐药分析[J]. 西部医学, 2019, 31(4): 535-539.
90
World Health Organization. Guidelines on core components of infection prevention and control programmes at the national and acute health care facility level [EB/OL]. [2024-10-15].

基金

国家自然科学基金(92169107)

评论

PDF(812 KB)

Accesses

Citation

Detail

段落导航
相关文章

/