
基于心率变异性的噪声烦恼识别模型构建
代盛仪, 刘海玥, 孙志强, 李丹, 王桐, 左小红, 徐芳, 蒋朝哲
基于心率变异性的噪声烦恼识别模型构建
Noise Annoyance Recognition Model based on Heart Rate Variability
目的 探究心率变异性(heart rate variability, HRV)对噪声烦恼的预测效果,构建一种对噪声烦恼进行识别评估的模型。 方法 以在职地铁司机群体为被试者,基于地铁模拟器设计了列车司机驾驶实验,采集了40名在职地铁司机在不同噪声环境下的Weinstein噪声敏感性量表与主观噪声烦恼问卷以及心电数据,对HRV特征进行提取并采用Z-Score标准化将数据转化为标准正态分布。特征选择采用随机森林(random forest, RF)对特征值进行重要度排序依次输入挑选最重要特征,建立了多种基于心率变异性特征的司机噪声烦恼识别模型进行比较,并讨论个体噪声敏感性对准确性的影响。 结果 多种HRV特征与噪声烦恼相关。经特征选择发现,个体噪声敏感性对识别和检测噪声烦恼有显著作用。对比多种分类模型,使用卷积神经网络模型(convolutional neural network, CNN)对烦恼水平进行识别效果最好,准确率为90.03 %。 结论 基于心率变异性的深度学习模型具有良好的识别效果,为实时识别职业噪声烦恼提供了方法和理论支撑。
Objective To explore the predictive effect of heart rate variability (HRV) on noise annoyance and develop a model for identifying and assessing noise annoyance. Methods A group of employed subway drivers participated in a simulated train driving experiment under different noise conditions. The Weinstein Noise Sensitivity Scale, subjective noise annoyance questionnaire, and electrocardiogram data were collected. HRV features were extracted and transformed into a standard normal distribution using Z-Score normalization. Random Forest (RF) was used for feature selection and important features were inputted to establish various driver noise annoyance identification models based on HRV features. The impact of individual noise sensitivity on accuracy was also discussed. Results Multiple HRV features were found to be related to noise annoyance. Feature selection revealed that individual noise sensitivity significantly influenced the identification and detection of noise annoyance. Among various classification models, the Convolutional Neural Network (CNN) model achieved the best performance in identifying annoyance levels, with an accuracy of 90.03%. Conclusion The deep learning model based on HRV demonstrated excellent performance in identifying noise annoyance, providing a method and theoretical support for real-time recognition of occupational noise annoyance.
Heart rate variability / Noise annoyance / Subway drivers / Convolutional neural network
R131 / U29
1 |
|
2 |
胡勇, 王建新, 张美辨. 非稳态噪声导致职业性听力损失的研究进展[J]. 中华劳动卫生职业病杂志, 2021, 39(7): 550-554.
|
3 |
刘治会, 汪运, 王永义, 等. 地铁和单轨列车司机噪声接触水平与听力损失情况比较[J]. 中国职业医学, 2022, 49(1): 71-74.
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
李远飞, 国耀宇, 胡松林, 等. 噪声敏感性对短期噪声暴露效应影响的研究[J]. 载人航天, 2021, 27(2): 175-181.
|
12 |
|
13 |
|
14 |
刘坤, 焦钰博, 张晓明, 等. 基于心电的铁路列车驾驶压力检测研究[J]. 中国安全科学学报, 2022, 32(6): 31-37.
|
15 |
|
16 |
|
17 |
孙志强, 孙方遒, 丁德云, 等. 钢轨调频阻尼器质量分布与性能研究[J]. 铁道科学与工程学报, 2024, 21(09): 3585-3594.
|
18 |
|
19 |
韩涛, 吴建平. 噪声敏感性量表的修订及信效度[J]. 中国健康心理学杂志, 2015, 23(2): 196-200.
|
20 |
国家质量监督检验检疫总局、中国国家标准化管理委员会. 声学 应用社会调查和社会声学调查评价噪声烦恼度: GB/Z 21233—2007 [S]. 北京: 中国标准出版社, 2008.
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
何家敏, 周俊召, 罗雁云. 基于神经网络模型的高架轨道噪声烦恼度预测[J]. 噪声与振动控制, 2023, 43(1): 227-231, 250.
|
29 |
|
30 |
刘涛, 王淼, 祝洪凯, 等. 职业性噪声暴露对健康影响的研究进展[J]. 公共卫生与预防医学, 2023, 34(6): 127-131.
|
/
〈 |
|
〉 |