基于心率变异性的噪声烦恼识别模型构建

代盛仪, 刘海玥, 孙志强, 李丹, 王桐, 左小红, 徐芳, 蒋朝哲

PDF(2238 KB)
PDF(2238 KB)
西南医科大学学报 ›› 2025, Vol. 48 ›› Issue (1) : 74-80. DOI: 10.3969/j.issn.2096-3351.2025.01.015
临床医学研究

基于心率变异性的噪声烦恼识别模型构建

作者信息 +

Noise Annoyance Recognition Model based on Heart Rate Variability

Author information +
History +

摘要

目的 探究心率变异性(heart rate variability, HRV)对噪声烦恼的预测效果,构建一种对噪声烦恼进行识别评估的模型。 方法 以在职地铁司机群体为被试者,基于地铁模拟器设计了列车司机驾驶实验,采集了40名在职地铁司机在不同噪声环境下的Weinstein噪声敏感性量表与主观噪声烦恼问卷以及心电数据,对HRV特征进行提取并采用Z-Score标准化将数据转化为标准正态分布。特征选择采用随机森林(random forest, RF)对特征值进行重要度排序依次输入挑选最重要特征,建立了多种基于心率变异性特征的司机噪声烦恼识别模型进行比较,并讨论个体噪声敏感性对准确性的影响。 结果 多种HRV特征与噪声烦恼相关。经特征选择发现,个体噪声敏感性对识别和检测噪声烦恼有显著作用。对比多种分类模型,使用卷积神经网络模型(convolutional neural network, CNN)对烦恼水平进行识别效果最好,准确率为90.03 %。 结论 基于心率变异性的深度学习模型具有良好的识别效果,为实时识别职业噪声烦恼提供了方法和理论支撑。

Abstract

Objective To explore the predictive effect of heart rate variability (HRV) on noise annoyance and develop a model for identifying and assessing noise annoyance. Methods A group of employed subway drivers participated in a simulated train driving experiment under different noise conditions. The Weinstein Noise Sensitivity Scale, subjective noise annoyance questionnaire, and electrocardiogram data were collected. HRV features were extracted and transformed into a standard normal distribution using Z-Score normalization. Random Forest (RF) was used for feature selection and important features were inputted to establish various driver noise annoyance identification models based on HRV features. The impact of individual noise sensitivity on accuracy was also discussed. Results Multiple HRV features were found to be related to noise annoyance. Feature selection revealed that individual noise sensitivity significantly influenced the identification and detection of noise annoyance. Among various classification models, the Convolutional Neural Network (CNN) model achieved the best performance in identifying annoyance levels, with an accuracy of 90.03%. Conclusion The deep learning model based on HRV demonstrated excellent performance in identifying noise annoyance, providing a method and theoretical support for real-time recognition of occupational noise annoyance.

关键词

心率变异性 / 噪声烦恼 / 地铁司机 / 卷积神经网络

Key words

Heart rate variability / Noise annoyance / Subway drivers / Convolutional neural network

中图分类号

R131 / U29

引用本文

导出引用
代盛仪 , 刘海玥 , 孙志强 , . 基于心率变异性的噪声烦恼识别模型构建. 西南医科大学学报. 2025, 48(1): 74-80 https://doi.org/10.3969/j.issn.2096-3351.2025.01.015
Shengyi DAI, Haiyue LIU, Zhiqiang SUN, et al. Noise Annoyance Recognition Model based on Heart Rate Variability[J]. Journal of Southwest Medical University. 2025, 48(1): 74-80 https://doi.org/10.3969/j.issn.2096-3351.2025.01.015

参考文献

1
MÜNZEL T, KRÖLLER-SCHÖN S, OELZE M, et al. Adverse cardiovascular effects of traffic noise with a focus on nighttime noise and the new WHO noise guidelines[J]. Annu Rev Public Health, 2020, 41: 309-328.
2
胡勇, 王建新, 张美辨. 非稳态噪声导致职业性听力损失的研究进展[J]. 中华劳动卫生职业病杂志, 2021, 39(7): 550-554.
3
刘治会, 汪运, 王永义, 等. 地铁和单轨列车司机噪声接触水平与听力损失情况比较[J]. 中国职业医学, 2022, 49(1): 71-74.
4
MANOHARE M, RAJASEKAR E, PARIDA M, et al. Bibliometric analysis and review of auditory and non-auditory health impact due to road traffic noise exposure[J]. Noise Mapp, 2022, 9(1): 67-88.
5
GONG X, FENECH B, BLACKMORE C, et al. Association between noise annoyance and mental health outcomes: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2022, 19(5): 2696.
6
SONG C, LI H, MA H, et al. Effects of noise type and noise sensitivity on working memory and noise annoyance[J]. Noise Health, 2022, 24(114): 173-181.
7
FAN SP, LI J, LI LY, et al. Noise annoyance prediction of urban substation based on transfer learning and convolutional neural network[J].Energies,2022,15(3):749-749.
8
MA M, RAN W, WU J, et al. Evaluating the impact of metro interior noise on passenger annoyance: an experimental study[J]. Int J Environ Res Public Health, 2022, 19(9): 5041.
9
MARQUIS-FAVRE C, BRAGA R, GOURDON E, et al. Estimation of psychoacoustic and noise indices from the sound pressure level of transportation noise sources: investigation of their potential benefit to the prediction of long-term noise annoyance[J]. Appl Acoust, 2023, 211: 109560.
10
SCHRECKENBERG D, GRIEFAHN B, MEIS M. The associations between noise sensitivity, reported physical and mental health, perceived environmental quality, and noise annoyance[J]. Noise Health, 2010, 12(46): 7-16.
11
李远飞, 国耀宇, 胡松林, 等. 噪声敏感性对短期噪声暴露效应影响的研究[J]. 载人航天, 2021, 27(2): 175-181.
12
LI ZG, DI GQ, JIA L. Relationship between Electroencephalogram variation and subjective annoyance under noise exposure[J]. Appl Acoust, 2014, 75: 37-42.
13
AARBAOUI T EL, MÉLINE J, BRONDEEL R, et al. Short-term association between personal exposure to noise and heart rate variability: the RECORD MultiSensor study[J]. Environ Pollut, 2017, 231: 703-711.
14
刘坤, 焦钰博, 张晓明, 等. 基于心电的铁路列车驾驶压力检测研究[J]. 中国安全科学学报, 2022, 32(6): 31-37.
15
SHI L, ZHENG L, JIN D, et al. Assessment of combination of automated pupillometry and heart rate variability to detect driving fatigue[J]. Front Public Health, 2022, 10: 828428.
16
RAHMAN H, AHMED U M, BARUA S, et al. Non-contact-based driver’s cognitive load classification using physiological and vehicular parameters[J].Biomedical Signal Processing and Control, 2020, 55:101634-101634.
17
孙志强, 孙方遒, 丁德云, 等. 钢轨调频阻尼器质量分布与性能研究[J]. 铁道科学与工程学报, 2024, 21(09): 3585-3594.
18
WEINSTEIN ND. Individual differences in reactions to noise: a longitudinal study in a college dormitory[J]. J Appl Psychol, 1978, 63(4): 458-466.
19
韩涛, 吴建平. 噪声敏感性量表的修订及信效度[J]. 中国健康心理学杂志, 2015, 23(2): 196-200.
20
国家质量监督检验检疫总局、中国国家标准化管理委员会. 声学 应用社会调查和社会声学调查评价噪声烦恼度: GB/Z 21233—2007 [S]. 北京: 中国标准出版社, 2008.
21
GILGEN-AMMANN R, SCHWEIZER T, WYSS T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise[J]. Eur J Appl Physiol, 2019, 119(7): 1525-1532.
22
DI GQ, YAO Y, CHEN C, et al. An experiment study on the identification of noise sensitive individuals and the influence of noise sensitivity on perceived annoyance[J]. Appl Acoust, 2022, 185: 108394.
23
PHAM T, LAU ZJ, CHEN SHA, et al. Heart rate variability in psychology: a review of HRV indices and an analysis tutorial[J]. Sensors (Basel), 2021, 21(12): 3998.
24
JIAO YB, SUN ZQ, FU LP, et al. Physiological responses and stress levels of high-speed rail train drivers under various operating conditions - a simulator study in China[J]. Int J Rail Transp, 2023, 11(4): 449-464.
25
LIU K, JIAO Y, DU C, et al. Driver stress detection using ultra-short-term HRV analysis under real world driving conditions[J]. Entropy (Basel), 2023, 25(2): 194.
26
NAYAK SK, PRADHAN B, MOHANTY B, et al. A review of methods and applications for a heart rate variability analysis[J]. Algorithms, 2023, 16(9): 433.
27
GU Z, ZARUBIN V, MARTSBERGER C. The effectiveness of time domain and nonlinear heart rate variability metrics in ultra-short time series[J]. Physiol Rep, 2023, 11(22): e15863.
28
何家敏, 周俊召, 罗雁云. 基于神经网络模型的高架轨道噪声烦恼度预测[J]. 噪声与振动控制, 2023, 43(1): 227-231, 250.
29
MOGHADAM SMK, ALIMOHAMMADI I, TAHERI E, et al. Modeling effect of five big personality traits on noise sensitivity and annoyance[J]. Appl Acoust, 2021, 172: 107655.
30
刘涛, 王淼, 祝洪凯, 等. 职业性噪声暴露对健康影响的研究进展[J]. 公共卫生与预防医学, 2023, 34(6): 127-131.

基金

甘肃省科技厅项目(22CX8JA142)
民航飞行技术与飞行安全重点实验室开放项目(Q113621Q02002)
兰州市轨道交通有限公司资助项目(R113620H01035)

评论

PDF(2238 KB)

Accesses

Citation

Detail

段落导航
相关文章

/