
碳纤维增强热塑性工程塑料研究进展
郑红伟, 张泽凯, 郭增贤, 吴喜娜, 魏浩, 王国军
碳纤维增强热塑性工程塑料研究进展
Research Progress of Carbon Fiber Reinforced Thermoplastic Engineering Plastics
碳纤维增强热塑性复合材料(CFRP)具有比模量高、比强度大、耐腐蚀性强等优点。根据增强体长度,CFRP分为连续碳纤维增强热塑性复合材料(CCFRP)和短切碳纤维增强热塑性复合材料(SCFRP)。与热固性基体相比,热塑性树脂基体具有加工周期短和重复利用性强等特点,被广泛应用于航空航天、临床医学、风力发电等领域。文章介绍CFRP在航空航天和临床医学中的常见应用,综述了适用于不同增强体长度(连续碳纤维和短切碳纤维)的热塑性复合材料的常用成型工艺,如注塑成型、模压成型、3D打印成型、传递模塑成型等。文章从热回收、机械回收、化学回收方面介绍碳纤维增强热塑性复合材料回收利用的方法,提出通过对短切碳纤维取向进行控制来提高复合材料的性能,指出研制耐高温、与树脂基体互溶性高、与树脂基体和碳纤维有较高结合力的碳纤维上浆剂是未来的研究重点。
Carbon fiber reinforced thermoplastic composites (CFRP) have advantages such as high specific modulus, high specific strength, and strong corrosion resistance. Based on the length of the reinforcing fibers, CFRP is divided into continuous carbon fiber reinforced thermoplastic composites (CCFRP) and short cut carbon fiber reinforced thermoplastic composites (SCFRP). Compared with thermosetting matrices, thermoplastic resin matrices have characteristics such as short processing cycles and strong recyclability. They have been widely used in the fields such as aerospace, clinical medicine and wind power generation. The article introduces common applications of CFRP in aerospace and clinical medicine, and reviews the commonly used molding processes for thermoplastic composites suitable for different lengths of reinforcing fibers (continuous carbon fibers and short cut carbon fibers), such as injection molding, compression molding, 3D printing molding and transfer molding. The article introduces the recycling methods of carbon fiber reinforced thermoplastic composites from the aspects of thermal recycling, mechanical recycling,and chemical recycling. It proposes that controlling the orientation of short cut carbon fibers can improve the performance of the composites, and points out that the development of carbon fiber sizing agents with high heat resistance, good miscibility with resin matrices, and strong bonding with both resin matrices and carbon fibers is a key focus for future research.
碳纤维 / 复合材料 / 回收利用 / 成型工艺 / 热塑性
Carbon fiber / Composites / Recycle / Forming process / Thermoplastic
TB332
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
陈雯娜.短切碳纤维增强热塑性复合材料性能影响因素[J].纺织科学研究,2021(5):58-63.
|
14 |
袁海兵.短切碳纤维增强聚丙烯复合材料的性能[J].合成树脂及塑料,2018,35(2):24-28.
|
15 |
马晓敏,刑立学,谭洪生,等.连续碳纤维增强PA66复合材料的结晶与力学性能[J].中国塑料,2019(2):40-46, 61.
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
|
52 |
|
53 |
于天淼,姜凤春,果春焕,等.碳纤维增强热塑性复合材料成型工艺的研究进展[J].工程塑料应用,2018,46(4):139-144.
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
|
63 |
|
64 |
|
65 |
|
66 |
|
/
〈 |
|
〉 |