废塑料催化热解催化剂研究进展

严臻睿, 谢林洲, 商辉

PDF(657 KB)
PDF(657 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (01) : 173-179. DOI: 10.15925/j.cnki.issn1005-3360.2025.01.032
综述

废塑料催化热解催化剂研究进展

作者信息 +

Research Progress of Catalyst for Catalytic Pyrolysis of Waste Plastics

Author information +
History +

摘要

随着塑料消费品需求的不断增长,“白色污染”问题越来越严重。因此,废塑料回收利用对实现废塑料的无害化和资源化具有十分重要的意义。文章对塑料处理的催化热解技术中必不可少的催化剂进行调研,介绍催化热解催化剂的分类,从沸石催化剂、流化催化裂化(FCC)催化剂、二氧化硅-氧化铝催化剂、黏土催化剂、金属负载型催化剂等方面综述催化热解催化剂的研究进展,分析催化热解催化剂的优点和影响因素。催化剂在废塑料热解过程中通过降低反应温度和提高产物选择性来增强资源回收的效率和效果,实现对废塑料的高效利用,避免了资源的浪费。

Abstract

With the continuous growth in demand for plastic consumer goods, the "white pollution" problem is becoming increasingly severe. Therefore, the recycling and utilization of waste plastics hold significant importance for achieving the harmlessness and resourcefulness of waste plastics. The article investigates the indispensable catalysts in the catalytic pyrolysis technology for plastic treatment, introduces the classification of catalytic pyrolysis catalysts, and summarizes the research progress of catalytic pyrolysis catalysts from aspects such as zeolite catalysts, fluid catalytic cracking (FCC) catalysts, silica-alumina catalysts, clay catalysts, and metal-loaded catalysts. It analyzes the advantages and influencing factors of catalytic pyrolysis catalysts. Catalysts enhance the efficiency and effectiveness of resource recovery in the pyrolysis process of waste plastics by reducing reaction temperatures and improving product selectivity, achieving efficient utilization of waste plastics and avoiding resource waste.

关键词

废塑料 / 催化裂解 / 沸石催化剂 / FCC催化剂 / 黏土催化剂 / 金属催化剂

Key words

Waste plastics / Catalytic pyrolysis / Zeolite catalysts / FCC catalysts / Clay catalysts / Metal catalysts

中图分类号

TQ426.6

引用本文

导出引用
严臻睿 , 谢林洲 , 商辉. 废塑料催化热解催化剂研究进展. 塑料科技. 2025, 53(01): 173-179 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.032
YAN Zhenrui, XIE Linzhou, SHANG Hui. Research Progress of Catalyst for Catalytic Pyrolysis of Waste Plastics[J]. Plastics Science and Technology. 2025, 53(01): 173-179 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.032

参考文献

1
汤桂兰,胡彪,康在龙,等.废旧塑料回收利用现状及问题[J].再生资源与循环经济,2013,6(1):31-35.
2
赵胜利,黄宁生,朱照宇.塑料废弃物污染的综合治理研究进展[J].生态环境,2008,17(6):2473-2481.
3
QURESHI M S, OASMAA A, PIHKOLA H, et al. Pyrolysis of plastic waste: Opportunities and challenges[J]. Journal of Analytical and Applied Pyrolysis, 2020, DOI: 10.1016/j.jaap.2020.104804.
4
JESWANI H, KRÜGER C, RUSS M, et al. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2020.144483.
5
SONG J, WANG J, PAN Y, et al. Catalytic pyrolysis of waste polyethylene into benzene, toluene, ethylbenzene and xylene (BTEX)-enriched oil with dielectric barrier discharge reactor[J]. Journal of Environmental Management, 2022, 322: 116096.
6
MOORTHY RAJENDRAN K, CHINTALA V, SHARMA A, et al. Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW)[J]. Materials Today Communications, 2020, DOI: 10.1016/j.mtcomm.2020.100982.
7
DONAJ P J, KAMINSKY W, BUZETO F, et al. Pyrolysis of polyolefins for increasing the yield of monomers' recovery[J]. Waste Management, 2012, 32(5): 840-846.
8
IVANOVA S R, GUMEROVA E F, MINSKER K S, et al. Selective catalytic degradation of polyolefins[J]. Progress in Polymer Science, 1990, 15(2): 193-215.
9
QIE Z P, XIANG H, XIANG H Z, et al. Catalytic pyrolysis of high-density polyethylene (HDPE) over hierarchical ZSM-5 zeolites produced by microwave-assisted chelation-alkaline treatment[J]. Fuel, 2024, DOI: 10.1016/j.fuel.2024.131532.
10
ZHANG L T, YANG X H, WU Q H, et al. ZSM-5@ceramic foam composite catalyst derived from spent bleaching clay for continuous pyrolysis of waste oil to produce monocyclic aromatic hydrocarbons[J]. Science of the Total Environment, 2024, DOI: 10.1016/j.scitotenv.2024.171887.
11
IRAWAN A, KURNIAWAN T, NURKHOLIFAH N, et al. Pyrolysis of polyolefins into chemicals using low-cost natural zeolites[J]. Waste and Biomass Valorization, 2023, 14(5): 1705-1719.
12
MIANDAD R, BARAKAT M A, REHAN M, et al. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts[J]. Waste Management, 2017, 69: 66-78.
13
ALOTIBI M F, ALSHAMMARI B A, ALOTAIBI M H, et al. ZSM-5 zeolite based additive in FCC Process: A review on modifications for improving propylene production[J]. Catalysis Surveys from Asia, 2020, 24(1): 1-10.
14
ARTETXE M, LOPEZ G, AMUTIO M, et al. Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10637-10645.
15
IBÁÑEZ M, ARTETXE M, LOPEZ G, et al. Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis-cracking of HDPE[J]. Applied Catalysis B: Environmental, 2014, 148-149: 436-445.
16
WANG J, JIANG J C, SUN Y J, et al. Catalytic degradation of waste rubbers and plastics over zeolites to produce aromatic hydrocarbons[J]. Journal of Cleaner Production, 2021, DOI: 10.1016/j.jclepro.2021.127469.
17
DALIGAUX V, RICHARD R, MARIN-GALLEGO M, et al. Deactivation by coking of industrial ZSM-5 catalysts used in LDPE pyrolysis and regeneration by ozonation process—Bench scale studies[J]. Applied Catalysis A: General, 2024, DOI: 10.1016/j.apcata.2024.119581.
18
MA Y, GAO N B, QUAN C, et al. High-yield H2 production from HDPE through integrated pyrolysis and plasma-catalysis reforming process[J]. Chemical Engineering Journal, 2024, DOI: 10.1016/j.cej.2023.147877.
19
GHORBANNEZHAD P, PARK S, ONWUDILI J A. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products[J]. Waste Management, 2020, 102: 909-918.
20
MIRKARIMI S M R, BENSAID S, CHIARAMONTI D. Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review[J]. Applied Energy, 2022, DOI: 10.1016/j.apenergy.2022.120040.
21
DEGNAN T F. Applications of zeolites in petroleum refining[J]. Topics in Catalysis, 2000, 13(4): 349-356.
22
LEE K H, NOH N S, SHIN D H, et al. Comparison of plastic types for catalytic degradation of waste plastics into liquid product with spent FCC catalyst[J]. Polymer Degradation and Stability, 2002, 78(3): 539-544.
23
LIN Y H, YANG M H, WEI T T, et al. Acid-catalyzed conversion of chlorinated plastic waste into valuable hydrocarbons over post-use commercial FCC catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(1): 154-162.
24
WANG P C, QIAO L, WANG W, et al. Catalytic pyrolysis of waste composite plastics with waste FCC catalyst[J]. Journal of the Energy Institute, 2023, DOI: 10.1016/j.joei.2023.101338.
25
XU D, LU X K, ZHANG Y S, et al. Insights into in-situ catalytic degradation of plastic wastes over zeolite-based catalyst from perspective of three-dimensional pore structure evolution[J]. Chemical Engineering Journal, 2022, DOI: 10.1016/j.cej.2022.138402.
26
SHAN T L, WANG K S, LI Y, et al. Study on the kinetics of catalytic pyrolysis of single and mixed waste plastics by spent FCC catalyst[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(4): 1365-1383.
27
AISIEN E T, OTUYA I C, AISIEN F A. Thermal and catalytic pyrolysis of waste polypropylene plastic using spent FCC catalyst[J]. Environmental Technology & Innovation, 2021, DOI: 10.1016/j.eti.2021.101455.
28
OROZCO S, SANTAMARIA L, ARTETXE M, et al. Influence of oxidative conditions on the deactivation of an equilibrium FCC catalyst in the fast pyrolysis of HDPE in a conical spouted bed reactor[J]. Chemical Engineering Journal, 2023, DOI: 10.1016/j.cej.2023.144947.
29
SHAH V, KUMAR D, MANDAL U K. Pyrolysis of model plastic component polypropylene to hydrogen over mesoporous alumina catalysts: Effect of pluronic structure directing agents[J]. Journal of Analytical and Applied Pyrolysis, 2023, DOI: 10.1016/j.jaap.2023.106244.
30
SEO Y H, LEE K H, SHIN D H. Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(2): 383-398.
31
SAKATA Y, UDDIN Md A, MUTO A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1): 135-155.
32
LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud[J]. Applied Catalysis B: Environmental, 2011, 104(3): 211-219.
33
LI K, CAI C, ZHOU W, et al. Tandem pyrolysis-catalytic upgrading of plastic waste towards kerosene-range products using Si-pillared vermiculite with transition metal modification[J]. Journal of Hazardous Materials, 2024, DOI: 10.1016/j.jhazmat.2023.133231.
34
LI P P, WEN B, YU F, et al. High efficient nickel/vermiculite catalyst prepared via microwave irradiation-assisted synthesis for carbon monoxide methanation[J]. Fuel, 2016, 171: 263-269.
35
CHMIELARZ L, KUŚTROWSKI P, PIWOWARSKA Z, et al. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNO x process[J]. Applied Catalysis B: Environmental, 2009, 88(3): 331-340.
36
LI K X, LEI J X, YUAN G A, et al. Fe-, Ti-, Zr- and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics[J]. Chemical Engineering Journal, 2017, 317: 800-809.
37
CAI W, KUMAR R, ZHENG Y, et al. Exploring the potential of clay catalysts in catalytic pyrolysis of mixed plastic waste for fuel and energy recovery[J]. Heliyon, 2023, DOI: 10.1016/j.heliyon.2023.e23140.
38
TAHER T, MUNANDAR A, MAWADDAH N, et al. Pyrolysis behavior of polyethylene terephthalate (PET) plastic waste under the presence of activated montmorillonite catalyst: TGA and EGA-MS Studies[C]//MOHAMMED B S, MIN T H, SUTANTO M H, et al. Proceedings of the International Conference on Emerging Smart Cities (ICESC 2022). Singapore: Springer Nature, 2024.
39
AHMETLI G, OZGAN A, ONEN V, et al. Marble processing effluent treatment sludge in waste poly(ethylene terephthalate) pyrolysis as catalyst-II: Recovery from pyrolytic fluids[J]. International Journal of Environmental Science and Technology, 2024, 21(7): 6021-6042.
40
LUO W, HU Q, FAN Z Y, et al. The effect of different particle sizes and HCl-modified kaolin on catalytic pyrolysis characteristics of reworked polypropylene plastics[J]. Energy, 2020, DOI: 10.1016/j.energy.2020.119080.
41
DAI L L, ZHOU N, LV Y C, et al. Chemical upcycling of waste polyolefinic plastics to low-carbon synthetic naphtha for closing the plastic use loop[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2021.146897.
42
SOLAK A, RUTKOWSKI P. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene[J]. Waste Management, 2014, 34(2): 504-512.
43
CHOI Y J, MIN YOON Y, JANG JJUN, et al. Two-fold advancement in LDPE Pyrolysis: Enhancing light oil output and substituting sand with kaolin in a fluidized bed system[J/OL]. Chemical Engineering Journal, 2024, DOI: 10.1016/j.cej.2024.151503.
44
YOON B S, KIM C, PARK G J, et al. Upgrading waste plastic pyrolysis oil via hydrotreating over sulfur-treated Ni-Mo/AlO catalysts23[J]. Fuel, 2024, DOI: 10.1016/j.fuel.2024.131688.
45
JI M X, CHEN L, QUE J J, et al. Effects of transition metal oxides on pyrolysis properties of PVC[J]. Process Safety and Environmental Protection, 2020, 140: 211-220.
46
MISKOLCZI N, GAO N, QUAN C. Pyrolysis-gasification of biomass and Municipal Plastic Waste using transition metal modified catalyst to investigate the effect of contaminants[J/OL]. Journal of the Energy Institute, 2023, DOI: 10.1016/j.joei.2023.101233.
47
JUNG S, KIM J H, TSANG Y F, et al. Valorizing plastic toy wastes to flammable gases through CO2-mediated pyrolysis with a Co-based catalyst[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2022.128850.
48
PRABU S, CHIANG K Y. Highly active Ni-Mg-Al catalyst effect on carbon nanotube production from waste biodegradable plastic catalytic pyrolysis[J]. Environmental Technology & Innovation, 2022, DOI: 10.1016/j.eti.2022.102845.
49
YAO D D, LI H, DAI Y J, et al. Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste[J]. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2020.127268.
50
HUANG J J, VEKSHA A, JUN T F J, et al. Upgrading waste plastic derived pyrolysis gas via chemical looping cracking-gasification using Ni-Fe-Al redox catalysts[J]. Chemical Engineering Journal, 2022, DOI: 10.1016/j.cej.2022.135580.
51
NOROUZI O, HADDADI S A, SALAUDEEN S, et al. Catalytic upgrading of polyethylene plastic waste using GMOF catalyst: Morphology, pyrolysis, and product analysis[J]. Fuel, 2024, DOI: 10.1016/j.fuel.2024.131742.
52
ZHANG D H, LIN X N, ZHANG Q F, et al. Catalytic pyrolysis of wood-plastic composite waste over activated carbon catalyst for aromatics production: Effect of preparation process of activated carbon[J]. Energy, 2020, DOI: 10.1016/j.energy.2020.118983.
53
CHEN W Q, ZHOU Y P, WANG Y J, et al. Microwave-assisted pyrolysis of plastic waste with magnetic catalysts in a multi-ridge field compressed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2024, DOI: 10.1016/j.jaap.2024.106440.
54
WANG B, CHEN Y S, CHEN W, et al. Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field[J]. Energy, 2024, DOI: 10.1016/j.energy.2024.130711.

评论

PDF(657 KB)

Accesses

Citation

Detail

段落导航
相关文章

/