基于计算机辅助的玻璃纤维增强聚酰胺6复合材料力学性能研究

张守会, 孟凡涛

PDF(1344 KB)
PDF(1344 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (01) : 142-146. DOI: 10.15925/j.cnki.issn1005-3360.2025.01.026
计算机辅助技术

基于计算机辅助的玻璃纤维增强聚酰胺6复合材料力学性能研究

作者信息 +

Computer-aided Study on Mechanical Properties of Glass Fiber Reinforced Polyamide 6 Composites

Author information +
History +

摘要

文章结合前人研究的实验数据,建立玻璃纤维增强聚酰胺6(PA6/GF)复合材料塑性模型-双线性各向同性硬化模型(用切线拟合塑性阶段应力应变曲线的变化),研究玻璃纤维(GF)质量分数对复合材料力学性能的影响,为PA6/GF复合材料仿真分析和实验设计提供参考。首先,基于Ansys有限元分析,从微观角度建立PA6/GF复合材料单元模型,结果显示复合材料具有各向同性特征。随后,采用双线性各向同性硬化模型对样条的弯曲性能和屈服性能进行仿真分析,结果显示弯曲强度与实验数据基本一致,屈服应变小于工程应变,符合理论规律。最后,通过仿真结果研究GF质量分数对PA6/GF复合材料力学性能的影响。结果表明:随着GF质量分数的增加,复合材料拉伸强度逐渐提高,当GF质量分数达到40%时,拉伸强度达到207.5 MPa,约为纯PA6的3倍;冲击强度随着GF质量分数的增加先上升再下降,当GF质量分数为35%时,复合材料的冲击强度达到21.6 kJ/m²。

Abstract

Combined with the experimental data from previous study, a bilinear isotropic hardening model of glass fiber reinforced polyamide 6 (PA6/GF) composites was established, and the effect of glass fiber (GF) content on the mechanical properties of the composites was studied, which can provide a reference for the simulation analysis and experimental design of PA6/GF composites. Firstly, based on the finite element analysis of Ansys, the element model of PA6/GF composites was established from a microscopic perspective, and the results showed that the composites had isotropic characteristics. Then, the bilinear isotropic hardening model was used to simulate and analyze the bending performance and yield performance of the splines, and the results showed that the bending strength was basically consistent with the experimental data, and the yield strain was smaller than the engineering strain, which was in line with the theoretical law. Finally, the effect of GF content on the mechanical properties of PA6/GF composites was studied through the simulation results. The results showed that with the increase of GF content, the tensile strength of the composites gradually increased, when the GF mass fraction reached 40%, the tensile strength reached 207.5 MPa, which was about three times that of pure PA6, and the impact strength of the composites increased first and then decreased with the increase of GF content, and when the GF mass fraction was 35%, the impact strength of the composites reached 21.6 kJ/m².

关键词

玻璃纤维 / 聚酰胺6 / 复合材料 / 仿真分析

Key words

Glass fiber / Polyamide 6 / Composites / Simulation analysis

中图分类号

TQ323.6

引用本文

导出引用
张守会 , 孟凡涛. 基于计算机辅助的玻璃纤维增强聚酰胺6复合材料力学性能研究. 塑料科技. 2025, 53(01): 142-146 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.026
ZHANG Shouhui, MENG Fantao. Computer-aided Study on Mechanical Properties of Glass Fiber Reinforced Polyamide 6 Composites[J]. Plastics Science and Technology. 2025, 53(01): 142-146 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.026

参考文献

1
董驾潮.纤维增强复合材料力学性能的有限元分析[D].沈阳:沈阳工业大学,2015.
2
郭早阳.有限变形下的复合材料本构建模[C]//第五届全国固体力学青年学者研讨会会议日程摘要集.大连:国家自然科学基金委员会数理科学部,中国力学学会,2012.
3
张坤伦,潘锋,韩勇,等.短纤维增强复合材料的力学性能仿真研究[J].机械设计与制造,2020(12):212-215, 220.
4
罗伟权,黄增斌,薛珂,等.玻纤增强尼龙6复合材料界面微观力学行为仿真研究[J].力学季刊,2022,43(4):762-770.
5
牛中原.短切纤维复合材料注塑成型仿真及其力学性能研究[D].哈尔滨:哈尔滨工业大学,2018.
6
常崇义,刘书田.单向纤维复合材料黏弹性性能预测[J].计算力学学报,2006(4):414-418.
7
储梦飞.注塑成型玻璃纤维增强PA66复合材料的各向异性力学性能[D].上海:东华大学,2019.
8
杨挺,贾普荣,黄涛,等.短玻璃纤维增强PA66的偏轴拉伸模量和强度研究[J].机械强度,2015,37(2):254-258.
9
刘庆辉.玻璃纤维增强尼龙6复合材料性能研究[D].长春:长春工业大学,2013.
10
郝好山,胡仁喜,康士廷.ANSYS12.0 LS-DYNA非线性有限元分析从入门到精通[M].北京:机械工业出版社,2010.
11
胡名玺,陈煜,杜振杰,等.基于ANSYS/LS-DYNA的包装件跌落仿真分析[J].包装工程,2007(11):53-54, 77.
12
汤晖.ANSYS Workbench结构有限元分析详解[M].北京:清华大学出版社,2023.
13
樊卓志,温树文,张鹏,等.纤维增强复合材料本构模型研究进展[J].材料导报,2018,32():560-564.
增刊2
14
周祝林,姚辉,刘剑,等.复合材料非线性力学的细观分析[J].玻璃钢/复合材料,2009(1):10-14.
15
WINEMAN A, PENCE T J. Fiber-reinforced composites: Nonlinear elasticity and beyond[J]. Journal of Engineering Mathematics, 2021, DOI: 10.1007/s10665-021-10119-1.
16
国家市场监督管理总局,中国国家标准化管理委员会. 塑料 拉伸性能的测定 第1部分:总则:GB/T 1040.1—2018 [S].北京:中国标准出版社,2018.
17
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 塑料 弯曲性能的测定:GB/T 9341—2008 [S].北京:中国标准出版社,2008.
18
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 塑料 简支梁冲击性能的测定 第2部分:仪器化冲击试验:GB/T 1043.2—2018 [S].北京:中国标准出版社,2018.
19
朱和国,张爱文.复合材料原理[M].北京:国防工业出版社,2013.
20
AMIRI‐RAD A, WISMANS M, PASTUKHOV V L, et al. Constitutive modeling of injection‐molded short‐fiber composites: Characterization and model application[J]. Journal of Applied Polymer Science, 2020, DOI: 10.1002/app.49248.
21
李跃文.玻璃纤维增强尼龙6的研究进展[J].玻璃钢/复合材料,2015(11):85-89.
22
郑骏驰,吴超,孟征,等.PA6/GF复合材料力学性能改进研究进展[J].工程塑料应用,2019,47(5):137-143.
23
李睿,王国,刘美华,等.长玻璃纤维增强尼龙6复合材料力学性能的研究[J].合成纤维工业,2017,40(5):28-32, 37.
24
HAMANAKA S, NONOMURA C, NGUYEN THI T B, et al. Correlation between fiber orientation distribution and mechanical anisotropy in glass-fiber-reinforced composite materials[J]. Journal of Polymer Engineering, 2019, 39(7): 653-660
25
LIU J, LIU X G. The studying on the influence of coupling agents to short glass fiber reinforced polyamide composites[J]. Materials Science and Engineering, 2011, DOI:10.4028/www.scientific.net/AMR.181-182.836.
26
Thomason J L.The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP[J]. Composites PartA: Applied Science and Manufacturing, 2002, 33(12): 1641-1652.
27
崔峰波.长玻璃纤维增强尼龙复合材料的制备及性能研究[D].杭州:浙江大学,2011.
28
张士华,陈光,崔崇,等.偶联剂处理对玻璃纤维/尼龙复合材料力学性能的影响[J].复合材料学报,2006(3):31-36.
29
张爽爽.长纤维增强尼龙6复合材料技术的研究与开发[D].北京:北京化工大学,2016.
30
陈光剑,宋玉兴,金学斌,等.连续玻璃纤维增强聚酰胺6复合材料的力学性能[J].工程塑料应用,2019,47(5):38-41, 47.

评论

PDF(1344 KB)

Accesses

Citation

Detail

段落导航
相关文章

/