
亚麻纤维/聚乳酸复合材料的力学性能、热稳定性及降解性能研究
王刚, 王利平
亚麻纤维/聚乳酸复合材料的力学性能、热稳定性及降解性能研究
Study on Mechanical properties, Thermal Stability and Degradation Performance of Polylactic Acid Bacteria/Flax Fiber Composites
在聚乳酸(PLA)复合材料中掺入质量分数0~40%的亚麻纤维,在辊磨挤出(GE)工艺和密炼混合(IM)工艺预混合的基础上使用注塑成型工艺制备亚麻纤维/聚乳酸(PLA)复合材料。结果表明:亚麻纤维的掺入可以显著提高复合材料的力学性能和生物降解性能,对热稳定性无显著影响。使用密炼混合工艺所得的复合材料比辊磨挤出工艺所得材料具有更为优异的力学性能和生物降解性能。40%L/PLA-IM复合材料拥有最优的力学性能及可生物降解性能,其拉伸强度为63.5 MPa,弹性模量为2.56 GPa,弯曲模量为3.49 GPa,冲击强度为5.58 kJ/m2,降解20 d吸水率为126%,降解20 d失重率为84.1%,降解20 d乳酸产量为36.2 mL。使用密炼混合工艺制备亚麻纤维/PLA复合材料具有一定的可行性。
Flax fibers with a mass fraction of 0~40% were incorporated into polylactic acid (PLA) composites. Based on the pre-mixing of grinding extrusion (GE) and internal mixing (IM) processes, injection molding was used to prepare flax fiber/polylactic acid (PLA) composites. The results show that the incorporation of flax fibers can significantly improve the mechanical properties and biodegradability of the composites, with no significant effect on thermal stability. The composites obtained by the IM process have more excellent mechanical properties and biodegradability than those obtained by the GE process. The 40%L/PLA-IM composite has the optimal mechanical properties and biodegradability. The tensile strength is 63.5 MPa, the elasticity modulus is 2.56 GPa, the flexural modulus is 3.49 GPa, the impact strength is 5.58 kJ/m², the water absorption rate after 20 days of degradation is 126%, the weight loss rate after 20 days of degradation is 84.1%, and the lactic acid production after 20 days of degradation is 36.2 mL. The preparation of flax fiber/PLA composites using the IM process is feasible.
Polylactic acid / Flax fiber / Grinding extrusion / Internal mixing
TB332
1 |
安重鑫,马建中,张雷.聚合物基MOFs复合材料抗菌研究进展[J].精细化工,2024,41(10):2120-2130.
|
2 |
张儒,姜宁,徐家川,等.植物纤维增强聚合物基复合材料湿热老化研究进展[J].材料导报,2024,38(2):245-252.
|
3 |
张春波,王泽凡,刘宣伯,等.热塑性聚合物基导热复合材料的研究进展[J].石油化工,2024,53(2):251-259.
|
4 |
郑波,颜春,祝颖丹,等.生物基可降解环氧树脂及其可回收碳纤维复合材料的研究进展[J].化工新型材料,2024,52(1):8-12, 17.
|
5 |
吴奇宗,姚庆达,许春树,等.可生物降解聚合物及其复合材料研究进展[J].皮革与化工,2022,39(5):31-39.
|
6 |
史可,张晶,苏婷婷,等.生物可降解塑料的改性研究进展[J].化工新型材料,2019,47(4):29-33.
|
7 |
杨晶晶,韦昭,张体凯,等.聚乳酸在临床转化生物医学应用中的研究进展[J].石油化工,2024,53(8):1155-1162.
|
8 |
李桂丽,许京生,冯巧,等.可降解塑料聚乳酸共混增韧改性进展[J].塑料,2023,52(5):134-139.
|
9 |
张亦婷,熊娟,杨思雨,等.生物基植物油及其衍生物改性聚乳酸(PLA)的进展[J].塑料,2023,52(4):153-159.
|
10 |
陈荣源,陶林娜,赵凌锋,等.聚乳酸/聚乙烯复合材料的制备与性能[J].塑料,2023,52(3):166-171.
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
李羽佳,王喜明,姚利宏,等.功能型植物纤维增强聚乳酸复合材料研究进展[J].塑料,2024,53(3):104-108.
|
16 |
罗国荣,高玺捷,李万菊,等.改性竹纤维/PLA复合材料的制备及其在草莓包装中的应用研究[J/OL].食品与发酵工业,1-14[2024-07-19].
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
佘亚楠,付烨,朱钦睿,等.纸浆纤维/聚乳酸复合材料的力学和热学性能[J].复合材料学报,2022,39(10):4856-4867.
|
22 |
|
23 |
|
24 |
|
/
〈 |
|
〉 |