生物基改性纳米P-N-Si协效阻燃聚氨酯泡沫的制备与研究

蔡军, 陈鑫宇, 谷晓昱, 孙军, 李洪飞, 张胜, 范瑞兰

PDF(2957 KB)
PDF(2957 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (01) : 61-67. DOI: 10.15925/j.cnki.issn1005-3360.2025.01.011
理论与研究

生物基改性纳米P-N-Si协效阻燃聚氨酯泡沫的制备与研究

作者信息 +

Preparation and Study of Bio-based Modified P-N-Si Nanometer Co-efficent Flame Retardant Polyurethane Foam

Author information +
History +

摘要

硬质聚氨酯泡沫(PU)是一种主链含有大量氨基甲酸酯基(—NHCOO—)重复结构单元的有机高分子材料,遇火极易被点燃。为改善其燃烧性能,研究以m-SiO2为硅源,植酸(PA)为酸源,4-氨基吡啶(4-AP)为氮源,同时选用过渡金属离子Zn2+为催化成炭剂,采用逐层改性的方式制备生物基改性P-N-Si系阻燃剂m-SKAPA-Zn。按照质量分数5%、10%、15%的比例添加到PU中,制备阻燃PU复合材料。结果表明:随着m-SKAPA-Zn添加量的增加,阻燃性能整体呈上升趋势,添加质量分数15% m-SKAPA-Zn的PU材料,极限氧指数(LOI)提高至22.6%,UL-94测试可达V-1级,烟密度等级降低37.5%。m-SKAPA-Zn表现出较好的阻燃性和抑烟效果。

Abstract

Rigid polyurethane foam (PU) is an organic polymer material with a large number of repeating structural unit carbamate groups (—NHCOO—) in the main chain, which is very easy to be ignited by fire. In order to improve its combustion performance, in this study, m-SiO2 was used as the silicon source, phytic acid (PA) was used as the acid source, 4-aminopyridine (4-AP) was used as the nitrogen source, the transition metal ion Zn2+ was selected as the catalytic carbon forming agent, and the biobased modified P-N-Si flame retardant m-SKAPA-Zn was prepared by a layer-by-layer modification. m-SKAPA-Zn was respectively added into the PU at the mass fraction of 5%, 10% and 15% to prepare flame retardant PU composites. The results showed that the flame retardant properties increased with the increase of m-SKAPA-Zn addition, the LOI of PU material with 15% m-SKAPA-Zn increased to 22.6%, the UL-94 test could reach the V-1 rating, and the smoke density level was reduced by 37.5%. m-SKAPA-Zn showed better flame retardancy and smoke inhibition effect.

关键词

硬质聚氨酯泡沫 / 介孔纳米二氧化硅(m-SiO2 / 植酸(PA) / P-N-Si阻燃剂

Key words

Rigid polyurethane foam / Mesoporous nano-silica (m-SiO2) / Phytic acid (PA) / P-N-Si flame retardant

中图分类号

TQ317

引用本文

导出引用
蔡军 , 陈鑫宇 , 谷晓昱 , . 生物基改性纳米P-N-Si协效阻燃聚氨酯泡沫的制备与研究. 塑料科技. 2025, 53(01): 61-67 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.011
CAI Jun, CHEN Xinyu, GU Xiaoyu, et al. Preparation and Study of Bio-based Modified P-N-Si Nanometer Co-efficent Flame Retardant Polyurethane Foam[J]. Plastics Science and Technology. 2025, 53(01): 61-67 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.011

参考文献

1
VISAKH P M, SEMLIN A O, REZAEV I A, et al. Review on soft polyurethane flame retardant[J]. Construction and Building Materials, 2019, DOI: 10.1016/j.conbuildmat.2019.116673.
2
QIAN L J, FENG F F, TANG S. Bi-phase flame-retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite[J]. Polymer, 2014, 55(1): 95-101.
3
秦颖,王强强.聚氨酯材料的发展现状[J].中国建材科技,2017,26(1):39-41.
4
邢凤钦,张伟,佟铭玉.阻燃型硬质聚氨酯泡沫的研究进展[J].辽宁化工,2021,50(5):650-653.
5
刘奋山.聚氨酯复合材料塑料跑道性能优势与发展研究[J].塑料助剂,2021(5):3-5.
6
廉兵杰,曹碧辉,许洋.水性聚氨酯涂料的研制及性能研究[J].涂层与防护,2022,43(1):1-5.
7
蔡昌辰,张凯,孙茜,等.次磷酸铝/聚磷酸铵阻燃聚氨酯泡沫塑料的性能研究[J].塑料科技,2020,48(8):11-14.
8
JIAO C M, WANG H Z, LI S X, et al. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites[J]. Journal of Hazardous Materials, 2017, 332: 176-184.
9
吴芸.聚合物火灾危险性试验及评价方法探讨[J].消防技术与产品信息,2013(6):45-47.
10
AHMED L, ZHANG B, HATANAKA L C, et al. Application of polymer nanocomposites in the flame retardancy study[J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 381-391.
11
HE W T, SONG P A, YU B, et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants[J]. Progress in Materials Science, 2020, DOI: 10.1016/j.pmatsci.2020.100687.
12
TAN Y W, HE Z Y, LI X, et al. Research on the flame retardancy properties and mechanism of modified asphalt with halloysite nanotubes and conventional flame retardant[J]. Materials, 2020, DOI: 10.3390/ma13204509.
13
ESMAEILI-BAFGHI-KARIMABAD A, NEJATI-MOGHADAM L, SALAVATI-NIASARI M, et al. Synthesis of SiO2 nanocrystals by two approaches and their application in photocatalytic degradation and flame retardant polymeric nanocomposite[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29: 378-389.
14
段涛,彭同江.介孔SiO2材料的研究进展[J].中国非金属矿工业导刊,2005(6):8-12.
15
QIU X Q, WAN X L, WANG Z C, et al. A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure[J]. Composites Part B: Engineering 2022, DOI: 10.1016/j.compositesb.2022.109887.
16
FANG F, HOU S Q, SHEN H F, et al. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins[J]. Composites Communications, 2020, 17: 104-108.
17
FANG F, SONG P A, RAN S Y, et al. A facile way to prepare phosphorus-nitrogen-functionalized graphene oxide for enhancing the flame retardancy of epoxy resin[J]. Composites Communications, 2018, 10: 97-102.
18
ZHANG M F, WANG D, LI T, et al. Multifunctional flame-retardant, thermal insulation, and antimicrobial wood-based composites[J]. Biomacromolecules, 2023, 24(2): 957-966.
19
FOX D M, LEE J, CITRO C J, et al. Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites[J]. Polymer Degradation and Stability, 2013, 98: 590-596.
20
DING H L, QIU S L, WANG X, et al. Highly flame retardant, low thermally conducting, and hydrophobic phytic acid-guanazole-cellulose nanofiber composite foams[J]. Cellulose, 2021, 28(15): 9769-9783.
21
刘全义,王奕青,赵博文,等.羧酸类金属配合物对软质聚氨酯泡沫阻燃性能的影响[J].塑料科技,2022,50(9):41-45.
22
CHENG K C, YU C B, GUO W J, et al. Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay[J]. Carbohydrate Polymers, 2012, 87(2): 1119-1123.
23
LIU C, XU K, SHI Y Q, et al. Fire-safe, mechanically strong and tough thermoplastic Polyurethane/MXene nanocomposites with exceptional smoke suppression[J]. Materials Today Physics, 2022, DOI: 10.1016/j.mtphys.2022.100607.
24
HUANG J L, GUO W W, WANG X, et al. Combination ofcardanol-derived flame retardant with SiO2@MOF particles for simul-taneously enhancing the toughness, anti-flammability and smoke sup-pression of epoxy thermosets[J]. Composites Communications, 2021, DOI: 10.1016/j.coco.2021.100904.
25
QIU X Q, LI Z W, LI X H, et al. Fabrication of dimethyl methylphosphonate-loaded mesoporous silica nano fire extinguisher and flame retarding unsaturated polyester[J]. Composites Communications, 2022, DOI: 10.1016/j.coco.2022.101282.
26
JIANG H R, HU Y, JIANG Y. Synthesis and flame inhibition efficiency of a novel Fe-based metal complex with phosphorus-containing structure[J]. Journal of Solid State Chemistry 2022, DOI: 10.1016/j.jssc.2022.122975.

基金

内蒙古自然科学基金资助项目(2019 MS02007)

评论

PDF(2957 KB)

Accesses

Citation

Detail

段落导航
相关文章

/