3种等转化率法对废硅橡胶绝缘子热解的热重分析

干强, 雷鸣东, 李强, 李子由, 杨航, 杜庆贤

PDF(1411 KB)
PDF(1411 KB)
塑料科技 ›› 2025, Vol. 53 ›› Issue (01) : 51-55. DOI: 10.15925/j.cnki.issn1005-3360.2025.01.009
理论与研究

3种等转化率法对废硅橡胶绝缘子热解的热重分析

作者信息 +

Thermogravimetric Analysis of Pyrolysis of Waste Silicone Rubber Insulators Using Three Equal Conversion Rate Methods

Author information +
History +

摘要

硅橡胶复合绝缘子(SiR)材料在电力和工业中应用广泛,废SiR具有转化为新的自然能源的潜力。采用热重分析仪在氮气气氛中研究加热速率(β)为10、20、30、40 ℃/min的SiR在50~800 ℃范围内的热解动力学。结果表明:在SiR的热解过程中,随着加热速率的增加,热重曲线的峰值向较高的温度移动,温度变化约为100 ℃。同时,采用Kissinger (KAS)法、Friedman (FR)法和Flynn-Wall-Ozawa (FWO)法3种等转化方法对SiR的非等温热解动力学进行分析。结果表明:3种等转化方法得到的活化能之差不超过10 kJ/mol,总体趋势非常相似。SiR热解的活化能范围在44.67~59.65 kJ/mol之间。

Abstract

Silicone rubber composite insulators (SiR) materials are widely used in electricity and industry, and waste SiR has the potential to be transformed into new natural energy sources. Thermogravimetric analysis was conducted in a nitrogen atmosphere to study the pyrolysis kinetics of SiR heated at rates (β) of 10, 20, 30, 40 °C/min over the temperature range of 50 to 800 °C. The results showed that during the pyrolysis process of SiR, as the heating rate increases, the peak of the thermogravimetric curve shifted towards higher temperatures, with a temperature change of approximately 100 ℃. Meanwhile, the non-isothermal pyrolysis kinetics of SiR were analyzed using three conversion methods: Kissinger (KAS) method, Friedman (FR) method, and Flynn-Wall-Ozawa (FWO) method. The results showed that the difference in activation energy obtained by the three equal conversion methods did not exceed 10 kJ/mol, and the overall trend was very similar. The activation energy range of SiR pyrolysis was between 44.67~59.65 kJ/mol.

关键词

SiR / 热解动力学 / 等转化法 / 活化能

Key words

SiR / Pyrolysis kinetics / Equal conversion method / Activation energy

中图分类号

TQ333.93

引用本文

导出引用
干强 , 雷鸣东 , 李强 , . 3种等转化率法对废硅橡胶绝缘子热解的热重分析. 塑料科技. 2025, 53(01): 51-55 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.009
GAN Qiang, LEI Mingdong, LI Qiang, et al. Thermogravimetric Analysis of Pyrolysis of Waste Silicone Rubber Insulators Using Three Equal Conversion Rate Methods[J]. Plastics Science and Technology. 2025, 53(01): 51-55 https://doi.org/10.15925/j.cnki.issn1005-3360.2025.01.009

参考文献

1
徐林,曾本忠,王超,等.我国高性能合成橡胶材料发展现状与展望[J].中国工程科学,2020,22(5):128-136.
2
梁曦东,高岩峰,王家福,等.中国硅橡胶复合绝缘子快速发展历程[J].高电压技术,2016,42(9):2888-2896.
3
杨化彪,杨思广,张利萍,等.硅橡胶在电力行业中的应用现状[J].有机硅材料,2016,30(1):28-31.
4
杨德超,李超芹.结构化控制剂对硅橡胶性能的影响[J].橡胶工业,2024,71(3):204-210.
5
胡涛,吴洋,孙茂钧,等.硅橡胶低温环境性能研究[J].装备环境工程,2023,20(4):33-39.
6
徐尚仲,杨育其,陈炳耀,等.一种耐高温硅橡胶的制备及性能研究[J].粘接,2023,50(4):18-20.
7
荣以平,宋亮,王洋,等.热老化对不同交联度硅橡胶电气性能的影响[J].电工技术,2022(21):189-192, 195.
8
杨金云,张红岩,董志超,等.硅橡胶回收利用技术的研究进展[J].有机硅材料,2018,32(5):409-415.
9
李丽,汪远,张凯,等.绝缘子硅橡胶再生制备隔声材料研究[J].材料开发与应用,2018,33(3):49-55.
10
郭洺伽,孙堂强,曹宏伟,等.废旧硅橡胶酸催化降解的行为研究[J].化工新型材料,2018,46(4):254-257.
11
ZOU Z L, AN X G, LI L, et al. Microwave‐assisted alcoholysis of silicone rubber waste with geraniol for effective elastomer damping[J]. Polymer Engineering and Science, 2022, 62 (5): 1435-1443.
12
虞东霖,邹华,宁南英.硅橡胶基高导电复合材料的制备及其性能研究[J].橡胶工业,2023,70(7):483-489.
13
TRIPATHY A R, MORIN J E, WILLIAMS D E, et al. A novel approach to improving the mechanical properties in recycled vulcanized natural rubber and its mechanism[J]. Macromolecules, 2002, 35(12): 4616-4627.
14
WU X, FORMELA K, RASOOL T R, et al. Evaluation of structural change during fast transformation process of cross-linked NR into liquid NR by light pyrolysis[J]. Polymer Degradation and Stability, 2017, 13648-13657.
15
罗冠群,赵乐,潘雅琪.废弃PE与PET共热解特性与动力学特性研究[J].中国塑料,2024,38(3):86-93.
16
朴颖慧,王志,文放.典型碳纤维/环氧树脂复合材料热解动力学研究[J].化工新型材料,2024,52(6):139-143, 148.
17
夏勇,阳宇,朱聪,等.废轮胎热解过程中的动力学与热力学特性及热解油组分分析[J].低碳化学与化工,2023,48(4):36-45.
18
伍毅,梁玉轩,陈莹隆,等.典型飞机线缆绝缘材料老化热解特性研究[J].塑料科技,2023,51(6):1-5.
19
SINGH S, WU C, WILLIAMS T P. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 99-107.
20
DOU B, PARK S, LIM S, et al. Pyrolysis characteristics of refuse derived fuel in a pilot-scale unit[J]. Energy Fuels, 2007, 21(6): 3730-3734.
21
ABOULKAS A, HARFI E K, NADIFIYINE M, et al. Investigation on pyrolysis of Moroccan oil shale/plastic mixtures by thermogravimetric analysis[J]. Fuel Processing Technology, 2008, 89(11): 1000-1006.
22
NASKAR M, CHAKI T, REDDY K. Effect of waste plastic as modifier on thermal stability and degradation kinetics of bitumen/waste plastics blend[J]. Thermochimica Acta, 2010, 509(1): 128-134.
23
耿阳.焦化废水与气化焦热化学反应特性及机制的研究[D].鞍山:辽宁科技大学,2022.
24
王崇鑫,刘利国,周雯,等.影响硅橡胶涂层疏水性的因素[J].表面技术,2020,49(3):119-123.
25
ZHAO Y, XIANG Y, GU S, et al. Effect of surface roughness on flashover characteristics of silicone rubber[J]. Journal of Electrostatics, 2019, 99: 41-48.
26
王永强,黄泓贸,张伟,等.全预制式电缆户外终端硅橡胶绝缘的老化分析[J].南昌大学学报:理科版,2022,46(2):232-238.
27
赵庆,王晓亮,陶舒畅.基于常压热重分析仪的煤焦–水蒸气加压反应动力学数据求解[J].中国电机工程学报,2013,33(32):21-28, 10.
28
王芳,曾玺,王永刚,等.微型流化床与热重测定煤焦非等温气化反应动力学对比[J].化工学报,2015,66(5):1716-1722.
29
刘天.含铂催化体系对硅橡胶有机-无机转变及耐漏电起痕作用的研究[D].广州:华南理工大学,2020.
30
张红霞,刘昌伟.聚磷酸铵/环糊精/硅橡胶复合材料的阻燃性能及热降解动力学[J].南开大学学报:自然科学版,2020,53(1):7-11.
31
王雪蓉,王倩倩,刘运传,等.基于热重分析法的苯基硅橡胶热分解行为研究[J].橡胶工业,2021,68(9):699-704.

基金

中国南方电网重点科技资助项目(110002022030301SJ0001)

评论

PDF(1411 KB)

Accesses

Citation

Detail

段落导航
相关文章

/