
PA5T-56低温溶液/固相聚合的制备与表征
游兴华, 陈爽, 杜云慧, 肖茹
PA5T-56低温溶液/固相聚合的制备与表征
Preparation and Characterization of PA5T-56 by Low Temperature Solution/Solid Phase Polymerization
半芳香聚酰胺合成方法多样,其中低温溶液聚合法条件温和,易于控制。利用生物基戊二胺、对苯二甲酰氯以及己二酰氯,经低温溶液聚合和固相聚合制备系列组分的聚对苯二甲酰戊二胺-聚己二酰戊二胺(PA5T-56),以聚合产物相对黏度为考察对象,讨论固相聚合温度和时间对固相聚合的影响,并对PA5T-56的化学结构与热性能进行分析。结果表明:随着固相聚合过程中固相聚合温度和时间的增加,PA5T-56/L固相聚合产物的相对黏度得到提高,但进一步增加至240 ℃、8 h以上时,其相对黏度降低;低温溶液聚合所获不同组分PA5T-56/L的初始分解温度和最大分解速率温度分别高于389.8、463.5 ℃,当对苯二甲酰戊二胺链段(5T)摩尔分数高于70%时固相聚合可使其的熔融温度及结晶温度提高近20 ℃,分别高于290.1、240.3 ℃。
There are numerous methods for synthesizing semi-aromatic polyamides, among which the low-temperature solution polymerization method provides mild conditions and is easy to control. Polyp-phenyl-glutarylenediamide (PA5T-56) with a series of component ratios were prepared using bio-based pentanediamine, adipyl chloride and terephthalyl chloride by low temperature solution polymerization and solid phase polymerization. The effects of solid-phase polymerization temperature and time on solid-phase polymerization are discussed in terms of the relative viscosities of the polymerization products.Then the chemical structure and thermal properties of PA5T-56/L were studied. The results showed that with the increase of solid phase polymerization temperature and time during solid phase polymerization, the relative viscosity of low temperature polymerization products of PA5T-56/L could be increased, but when the temperature exceeds 240 ℃ and the reaction time exceeded 8 h, the relative viscosity decreased. The initial decomposition temperature and temperature of maximum decomposition rate of series of components PA5T-56/L obtained by low temperature solution polymerization were higher than 389.8,463.5 ℃. The solid-phase polymerization could increase its melting temperature and crystallization temperature by nearly 20 ℃ when the mole fraction of terephthaloyl pentamethylene diamine segment (5T) was higher than 70%, which was higher than 290.1, 240.3 ℃, respectively.
Bio-based polyamide / Low temperature solution polymerization / Solid phase polycondensation / Melt crystallization
TQ322.3
1 |
贺爽爽,胡国胜,张静婷,等.半芳香族聚酰胺合成与改性研究进展[J].工程塑料应用,2020,48(10):151-156.
|
2 |
|
3 |
|
4 |
|
5 |
王萍丽,任中来,邹光继,等.半芳香族聚酰胺的发展与应用研究[J].化工新型材料,2016,44(6):233-234, 239.
|
6 |
|
7 |
|
8 |
陶磊.基于生物基壬二酸的聚酰胺合成及结构性能研究[D].上海:东华大学,2020.
|
9 |
|
10 |
张海洋,郭小炜,宋云鹤,等.生物基半芳香族共聚酰胺PA5T/56与脂肪族聚酰胺PA56的性能对比[J].东华大学学报:自然科学版,2024,50(3):39-44.
|
11 |
刘冰肖,武宇,杨蕾蕾,等.生物基耐热性PA5T和PA5T/510的制备及性能[J].工程塑料应用,2022,50(11):39-43.
|
12 |
|
13 |
|
14 |
|
15 |
李鹤飞.半芳香族耐高温尼龙PA6T-66的制备与性能研究[D].上海:东华大学,2022.
|
16 |
王建霞.半芳香族耐高温PA6T/11的合成与表征[D].太原:中北大学,2015.
|
17 |
王双.半芳香聚酰胺PA6T/66的合成工艺及性能研究[D].郑州:郑州大学,2014.
|
18 |
王孝明,张乃恩,杜维元,等.生物基与石油基高温尼龙的热学性能[J].材料科学与工程学报,2022,40(4):674-678.
|
19 |
叶耀挺,杨克俭,陈林飞,等.半生物基耐高温尼龙5T/56制备及性能[J].工程塑料应用,2021,49(11):46-50.
|
20 |
|
21 |
贾锦波.含芳环聚酰胺的合成及序列结构分析[D].杭州:浙江大学,2019.
|
22 |
曹洪铬.耐高温共聚酰胺PA4T/46的合成及热稳定性研究[D].杭州:浙江大学,2020.
|
23 |
万利,冯连芳,顾雪萍,等. PA(66-co-6T)固相缩聚[J].浙江大学学报:工学版,2014,48(8):1522-1527.
|
24 |
侯文婷.熔融/固相缩聚合成L-聚乳酸[D].上海:华东理工大学,2011.
|
25 |
刘培.尼龙6固相缩聚及其结构性能的研究[D].天津:天津工业大学,2017.
|
/
〈 |
|
〉 |