本征型自愈合水性聚氨酯材料研究进展

王园园, 王晓昱, 冯见艳, 崔兴兰, 陆龙, 郭鸿儒, 张耀民

PDF(785 KB)
PDF(785 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (12) : 154-160. DOI: 10.15925/j.cnki.issn1005-3360.2024.12.029
综述

本征型自愈合水性聚氨酯材料研究进展

作者信息 +

Research Progress of Intrinsic type Self-Healing Waterborne Polyurethane Materials

Author information +
History +

摘要

水性聚氨酯因其优异的物化性能而广泛应用于生产和生活中。但在加工使用过程中,水性聚氨酯不可避免地受到摩擦损伤会产生微小裂纹,裂纹进一步扩大成为裂缝可导致性能迅速劣化,从而影响使用寿命。因此,通过功能化改性实现水性聚氨酯循环经济化利用具有重要意义。受大自然的启发,本征型自愈合材料应运而生,是材料科学发展的最新趋势,近年来备受关注。文章从可逆共价键和可逆非共价化学键方面综述本征型自愈合水性聚氨酯的研究进展,讨论基于不同动态化学键的水性聚氨酯的愈合机理和应用,阐述水性聚氨酯自愈合材料所面临的困境,指出同时具备高愈合效率、短愈合时间、可在温和条件下自主愈合和优异力学性能的自愈合水性聚氨酯材料将在不久的将来实现,并逐渐进入实际应用阶段。

Abstract

Waterborne polyurethanes are widely used in production and daily life due to their excellent physicochemical properties. However, during processing and use, waterborne polyurethanes inevitably suffer from frictional damage, which can lead to the formation of micro-cracks. These cracks can further expand into larger cracks, causing rapid performance degradation and thus affecting their service life. Therefore, achieving the circular economy use of waterborne polyurethanes through functional modification is of great significance. Inspired by nature, intrinsic type self-healing materials have emerged as the latest trend in materials science and have attracted much attention in recent years. The article reviews the research progress of intrinsic type self-healing waterborne polyurethanes from the aspects of reversible covalent bonds and reversible non-covalent chemical bonds, discusses the healing mechanisms and applications of waterborne polyurethanes based on different dynamic chemical bonds, elaborates on the challenges faced by self-healing waterborne polyurethane materials, and points out that self-healing waterborne polyurethane materials with high healing efficiency, short healing time, the ability to self-heal under mild conditions, and excellent mechanical properties will be realized in the near future and gradually enter the practical application phase.

关键词

自愈合 / 水性聚氨酯 / 本征型 / 可逆动态键

Key words

Self-healing / Waterborne polyurethanes / Intrinsic type / Reversible dynamic bond

中图分类号

TQ323.8

引用本文

导出引用
王园园 , 王晓昱 , 冯见艳 , . 本征型自愈合水性聚氨酯材料研究进展. 塑料科技. 2024, 52(12): 154-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.12.029
WANG Yuan-yuan, WANG Xiao-yu, FENG Jian-yan, et al. Research Progress of Intrinsic type Self-Healing Waterborne Polyurethane Materials[J]. Plastics Science and Technology. 2024, 52(12): 154-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.12.029

参考文献

1
SCRINZI E, ROSSI S, DEFLORIAN F, et al. Evaluation of aesthetic durability of waterborne polyurethane coatings applied on wood for interior applications[J]. Progress in Organic Coatings, 2011, 72(1/2): 81-87.
2
CARSON T, MORRIS L, FOLKMAN D. Innovative waterborne UV polyurethane dispersions for wood coatings[J]. Radtech Report, 2014, 28(2): 22-28.
3
SHIN E J, CHOI S M. Advances in waterborne polyurethane-based biomaterials for biomedical applications[J]. Advances in Experimental Medicine and Biology, 2018, 1077: 251-283.
4
WU Q, HU J L. Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles[J]. Composites Part B Engineering, 2016, 107: 59-66.
5
XIA P P, LIU P, WU S G, et al. Highly stretchable and sensitive flexible resistive strain sensor based on waterborne polyurethane polymer for wearable electronics[J]. Composites Science and Technology, 2022, DOI: 10.1016/j.compscitech.2022.109355.
向子龙.基于聚合物复合物的自愈合聚合物膜[D].长春:吉林大学,2020.
6
AGUIRRESAROBE R H, NEVEJANS S, RECK B, et al. Healable and self-healing polyurethanes using dynamic chemistry[J]. Progress in Polymer Science, 2021, DOI: 10.1016/j.progpolymsci.2021.101362.
7
ZHANG J J, YIN Y H. SMA-based bionic integration design of self-sensor-actuator-structure for artificial skeletal muscle[J]. Sensors & Actuators A: Physical, 2012, 181: 94-102.
8
HUANG L, YI N B, WU Y P, et al. Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites[J]. Advanced Materials, 2013, 25(15): 2224-2228.
9
JI S B, CAO W, YU Y, et al. Visible-light-induced self-healing diselenide-containing polyurethane elastomer[J]. Advanced Materials, 2016, 27(47): 7740-7745.
10
YANG Y L, LU X, WANG W W. A tough polyurethane elastomer with self-healing ability[J]. Materials & Design, 2017, 127: 30-36.
11
SHAABANI A, SEDGHI R. Synthesis of shape memory electroconductive polyurethane with self-healing capability as an intelligent biomedical scaffold for bone tissue engineering[J]. Polymer, 2021, DOI:10.1016/j.polymer.2021.123694.
12
WAN T, CHEN D. Mechanical enhancement of self-healing waterborne polyurethane by graphene oxide[J]. Progress in Organic Coatings, 2018, 121: 73-79.
13
SAI F T, ZHANG H T, QU J B, et al. Multifunctional waterborne polyurethane films: Amine-response, thermal-driven self-healing and recyclability[J]. Applied Surface Science, 2022, DOI: 10.1016/j.apsusc.2021.151526.
14
ZHANG A, LI J, FAN H, et al. Effect of mechanical properties on the self-healing behavior of waterborne polyurethane coatings[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52364.
15
王小萍,程炳坤,梁栋,等.本征型自愈合聚合物材料的研究进展[J].高分子材料科学与工程,2019,35(6):183-190.
16
GANDINI A. The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis[J]. Progress in Polymer Science, 2013, 38(1): 1-29.
17
张兆阳,刘寿祥,乔阳,等.基于Diels-Alder反应的自修复水性聚氨酯的合成与性能研究[J].合成材料老化与应用,2023,52(1):1-5.
18
CHEN L, DAI Z D, LOU W X, et al. Synthesis of self-healing soybean oil-based waterborne polyurethane based on Diels-Alder reaction[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52694.
19
陈亮,张萍波,蒋平平,等.基于二硫键的自修复水性聚氨酯的制备与性能研究[J].中国塑料,2022,36(6):46-53.
20
冯见艳,王园园,王学川.基于二硫键的水性聚氨酯/聚丙烯酸酯自愈合材料的制备及性能[J].高分子材料科学与工程,2021,37(8):83-92.
21
XUE R, ZHAO H, WEI Z A, et al. Self-healable, solvent response cellulose nanocrystal/waterborne polyurethane nanocomposites with encryption capability[J]. ACS Nano, 2023, 17(6): 5653-5662.
22
曾文华,金勇,李宇鹏,等.自愈合水性聚氨酯研究进展[J].皮革科学与工程,2022,32(4):40-46.
23
FAN W H, JIN Y, HUANG Y H, et al. Room-temperature self-healing and reprocessing of diselenide-containing waterborne polyurethanes under visible light[J]. Journal of Applied Polymer Science, 2019, DOI: 10.1002/app.47071.
24
FAN W H, JIN Y, SHI L J, et al. Transparent, eco-friendly, super-tough "living"supramolecular polymers with fast room-temperature self-healability and reprocessability under visible light[J]. Polymer, 2020, DOI: 10.1016/j.polymer.2020.122199.
25
SHANG X, JIN Y, DU W N, et al. Flame-retardant and self-healing waterborne polyurethane based on organic selenium[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 16118-16131.
26
李晖.基于席夫碱的动态交联聚合物材料的制备及性能研究[D].上海:上海交通大学,2020.
27
KERNEGHAN P A, HALPERIN S D, BRYCE D L, et al. Postsynthetic modification of an imine-based microporous organic network[J]. Canadian Journal of Chemistry, 2011, 89(5): 577-582.
28
PROCOPIO L J, CARROLL P J, BERRY D H. Reactions of carbon dioxide and carbon disulfide with.eta.2-silanimine complexes of zirconium: Facile deoxygenation and desulfurization reactions[J]. Journal of Hand Surgery, 2014, 12(8): 3087-3093.
29
KOVAŘÍČEK P, LEHN J M. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes[J]. Journal of the American Chemical Society, 2012, 134(22): 9446-9455.
30
CANTRELL G K, MEYER T Y. Catalytic C=N bond formation by metal-imide-mediated imine metathesis[J]. Journal of the American Chemical Society, 1998, 120(32): 8035-8042.
31
FAN W H, JIN Y, SHI L J, et al. Developing visible-light-induced dynamic aromatic schiff base bonds for room-temperature self-healable and reprocessable waterborne polyurethanes with high mechanical properties[J]. Journal of Materials Chemistry A, 2020, 8(14): 6757-6767.
32
LEI Z Q, XIE P, RONG M Z, et al. Catalyst-free dynamic exchange of aromatic Schiff base bonds and its application to self-healing and remolding of crosslinked polymers[J]. Journal of Materials Chemistry A, 2015, 3: 19662-19668.
33
袁野,杨建军,吴庆云,等.席夫碱自愈合水性聚氨酯的制备及性能[J].高分子材料科学与工程,2022,38(9):31-37.
34
ZHU X L, HAN K, CHAO L C, et al. Tough, photoluminescent, self-healing waterborne polyurethane elastomers resulting from synergistic action of multiple dynamic bonds[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19414-19426.
35
FANG Y L, DU X S, JIANG Y X, et al. Thermal-driven self-healing and recyclable waterborne polyurethane films based on reversible covalent interaction[J]. ACS Sustainable Chemistry And Engineering, 2018, 6(11): 14490-14500.
36
李聪,刘欢欢,杨桂花,等.基于肟-氨基甲酸酯的超强自愈合水性聚氨酯胶黏剂的制备及性能分析[J].高等学校化学学报,2021,42(8):2651-2660.
37
SHEN R L, LEI C D, LONG M J, et al. Trajectory controlling and collision warning device based on self-healing and conductive castor oil-based waterborne polyurethane in automated guided vehicles[J]. Advanced Functional Materials, 2023, DOI: 10.1002/adfm.202212455.
38
魏燕彦,白亚朋.酰腙键聚氨酯凝胶的合成及自愈合性能[J].高分子材料科学与工程,2017,33(11):40-45, 52.
39
REN J Y, DONG X B, DUAN Y J, et al. Synthesis and self-healing investigation of waterborne polyurethane based on reversible covalent bond[J]. Journal of Applied Polymer Science, 2022, DOI: 10.1002/app.52144.
40
SHI J X, ZHENG T Z, ZHANG Y, et al. Cross-linked polyurethane with dynamic phenol-carbamate bonds: Properties affected by the chemical structure of isocyanate dagger[J]. Polymer Chemistry, 2021, 12: 2421-2432.
41
LIU Y, ZHANG Z T, FAN W W, et al. Preparation of renewable gallic acid-based self-healing waterborne polyurethane with dynamic phenol-carbamate network: Toward superior mechanical properties and shape memory function[J]. Journal of Materials Science, 2022, 57(9): 5679-5696.
42
XIAO L Q, SHI J, NAN B F, et al. Highly sensitive detection of Fe3+ ions using waterborne polyurethane-carbon dots self-healable fluorescence film[J]. Macromolecular Materials and Engineering, 2020, DOI: 10.1002/mame.201900810.
43
WANG Y Y, HUANG X, ZHANG X X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure[J]. Nature Communications, 2021, DOI: 10.1038/s41467-021-21577-7.
44
LI Y P, JIN Y, ZENG W H, et al. Bioinspired fast room-temperature self-healing, robust, adhesive, and aie fluorescent waterborne polyurethane via hierarchical hydrogen bonds and use as a strain sensor[J]. ACS Applied Materials & Interfaces, 2023, 15(29): 35469-35482.
45
YU G C, JIE K C, HUANG F H. Supramolecular amphiphiles based on host-guest molecular recognition motifs[J]. Chemical Reviews, 2015, 115(15): 7240-7303.
46
XIAO L Q, SHI J, WU K, et al. Self-healing supramolecular waterborne polyurethane based on host-guest interactions and multiple hydrogen bonds[J]. Reactive and Functional Polymers, 2020, DOI: 10.1016/j.reactfunctpolym.2020.104482.
47
ZHANG E, SHI J, XIAO L Q, et al. A highly efficient bionic self- healing flexible waterborne polyurethane elastic film based on a cyclodextrin-ferrocene host-guest interaction[J]. Polymer Chemistry, 2021, 12(6): 831-842.
48
刘畅,亓帅,龚赛.自愈合高分子材料的研究进展[J].河南化工,2023,40(8):1-3, 7.
49
LIU Y, LI Z J, ZHANG Z T, et al. Thermal-driven self-healing waterborne polyurethane with robust mechanical properties based on reversible phenol-carbamate network and Fe3+-catechol coordination bond[J]. Progress in Organic Coatings, 2021, DOI: 10.1016/j.porgcoat.2021.106153.
50
SHENG Y M, WANG M H, ZHANG K P, et al. An "inner soft external hard", scratch-resistant, self-healing waterborne poly(urethane-urea)coating based on gradient metal coordination structure[J]. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2021.131883.
51
YANG Y, YE Z S, LIU X X, et al. A healable waterborne polyurethane synergistically cross-linked by hydrogen bonds and covalent bonds for composite conductors[J]. Journal of Materials Chemistry C, 2020, 8: 5280-5292.
52
FAN W H, YONG JIN Y, SHI L J, et al. Achieving fast self-healing and reprocessing of supertough water-dispersed "living supramolecular polymers containing dynamic ditelluride bonds under visible light[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6383-6395.
53
YAO Y, LIU B, XU Z Y, et al. An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy[J]. Materials Horizons, 2021, 8: 2742-2749.
54
袁野,杨建军,吴庆云,等.基于亚胺键和二硫键室温自愈合水性聚氨酯的制备及性能[J].精细化工,2022,39(12):2449-2455, 2466.
55
王孝涛.自愈合型水性聚氨酯的制备及其性能研究[D].济南:齐鲁工业大学,2023.

基金

兰州市科技计划项目(2022-2-75)
咸阳市科技计划项目(2018K02-14)
兰州市科技计划项目(2024-3-96)

评论

PDF(785 KB)

Accesses

Citation

Detail

段落导航
相关文章

/