导电环氧树脂复合材料研究进展

王鑫, 邵伟光, 陈俊, 高湛, 刘文言, 蔡利海

PDF(1200 KB)
PDF(1200 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (12) : 140-145. DOI: 10.15925/j.cnki.issn1005-3360.2024.12.027
综述

导电环氧树脂复合材料研究进展

作者信息 +

Research Progress of Conductive Epoxy Resin Composites

Author information +
History +

摘要

环氧树脂介电常数低、电导率差,在材料服役过程会产生静电聚集和放电的问题。文章简要介绍导电环氧树脂复合材料,从填料共混型和导电网络结构型这两种导电组分的存在状态综述导电环氧树脂复合材料,从金属填料、碳系填料、导电聚合物填料和MXene填料几个方面总结不同类型的导电环氧树脂复合材料填料,从真空浸渍的导电结构和复合泡沫结构总结不同类型的导电网络结构,阐述不同导电环氧树脂复合材料的制备方式,并展望导电环氧树脂复合材料的挑战和发展。

Abstract

The low dielectric constant and poor conductivity of epoxy resins create problems of electrostatic aggregation and discharge during material service. The paper briefly introduces the conductive epoxy resin composites, and summarizes the conductive epoxy resin composites from the state of existence of the two conductive components, namely, filler blend type and conductive network structure type. The different types of conductive epoxy resin composite filler are summarized from the aspects of metal filler, carbon filler, conductive polymer filler and MXene filler. The different types of conductive network structure are summarized from the vacuum impregnated conductive structure and composite foam structure. The preparation of different conductive epoxy composites is described, and the challenges and development of conductive epoxy composites are prospected.

关键词

环氧树脂 / 复合材料 / 导电填料 / 导电网络

Key words

Epoxy resin / Composites / Conductive filler / Conductive network

中图分类号

O633.13 / TQ323.5

引用本文

导出引用
王鑫 , 邵伟光 , 陈俊 , . 导电环氧树脂复合材料研究进展. 塑料科技. 2024, 52(12): 140-145 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.12.027
WANG Xin, SHAO Wei-guang, CHEN Jun, et al. Research Progress of Conductive Epoxy Resin Composites[J]. Plastics Science and Technology. 2024, 52(12): 140-145 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.12.027

参考文献

1
NICOLAIS L. Wiley encyclopedia of composites[M]. New York: Wiley, 2012.
2
孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
3
JIN F L, LI X, PARK S J. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 1-11.
4
PRILESCHAJEW N. Oxydation ungesättigter verbindungen mittels organischer superoxyde[J]. Berichte der deutschen chemischen Gesellschaft, 1909, 42(4): 4811-4815.
5
邱冠钧,赵志超,魏绪玲,等.橡胶作为环氧树脂增韧剂的研究进展[J].橡胶工业,2024,71(10):795-799.
6
GUO W W, ZHAO Y Y, WANG X, et al. Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances[J]. Composites Part B: Engineering, 2020, DOI: 10.1016/j.compositesb.2020.107990.
7
YADAV R, TIRUMALI M, WANG X G, et al. Polymer composite for antistatic application in aerospace[J]. Defence Technology, 2020, 16(1): 107-118.
8
MAKI N, TAJITSU Y, SASAKI H. Development of a packaging material using antistatic ionomer part 2: Charge distributions of potassium ionomer[J]. Packaging Technology and Science, 2007, 20(5): 309-313.
9
李丽丽,李青,肖文刚,等.石墨烯/环氧树脂纳米复合材料的研究进展[J].复合材料科学与工程,2021(5):110-119.
10
LIU S, CHEVALI V S, XU Z G, et al. A review of extending performance of epoxy resins using carbon nanomaterials[J]. Composites Part B: Engineering, 2018, 136: 197-214.
11
FILIPA A M M G, MARTA S, TERESA C, et al. Influence of fillers on epoxy resins properties: A review[J]. Journal of Materials Science, 2022, 57(32): 15183-15212.
12
孙业斌,张新民.填充型导电高分子材料的研究进展[J].特种橡胶制品,2009,30(3):73-78.
13
QI B, YAO T P, ZHANG Y D, et al. Endowing the sustainable antistatic properties to epoxy-based composites through adding graphene nanoplatelets[J]. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2020.124594.
14
DELMONTE J. Metal/polymer composites[M]. New York: Van Nostrand Reinhold,1990.
15
曹亚,王业飞,刘凡恺,等.氧化石墨烯/纤维素纳米晶协同增强环氧树脂研究[J].塑料科技,2024,52(4):80-84.
16
TJONG S C, LIANG G D, BAO S P. Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold[J]. Scripta Materialia, 2007, 57(6): 461-464.
17
BOUMEDIENNE N, FASKA Y, MAAROUFI A, et al. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites[J]. Journal of Physics & Chemistry of Solids, 2017, 104: 185-191.
18
MAAROUFI A, HABOUBI K, AMARTI A E, et al. Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders[J]. Journal of Materials Science, 2004, 39(1): 265-270.
19
CHENG N, SUN Z, YU X H, et al. Effect of flake silver-plated copper particles on the property enhancement of electrically conductive adhesives[J]. Physical Chemistry Chemical Physics: PCCP, 2023, 25(14): 10022-10032.
20
ZHANG J G, LIANG M H, HU Q, et al. Cu@Ag nanoparticles doped micron-sized Ag plates for conductive adhesive with enhanced conductivity[J].International Journal of Adhesion & Adhesives, 2020, DOI: 10.1016/j.ijadhadh.2020.102657.
21
VOVCHENKO L, MATZUI L, ZAGORODNII V, et al. Nanocarbon/Co3O4/epoxy composites for microwave shielding and absorption[J]. Advanced Engineering Materials, 2024, DOI: 10.1002/adem.202400224
22
KUMAR B P, OLUWASEUN O, GARRETT P, et al. Carbon and cellulose based nanofillers reinforcement to strengthen carbon fiber-epoxy composites: Processing, characterizations, and applications[J]. Frontiers in Materials, 2023, DOI: 10.3389/fmats.2022.1089996.
23
王玉周,郭金慧,孙少娟,等.还原氧化石墨烯/碳纳米管透明导电薄膜的制备及性能研究[J].功能材料,2022,53(2):2135-2139.
24
HU N, KARUBE Y, ARAI M, et al. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor[J]. Carbon, 2009, 48(3): 680-687.
25
DONG W, ZHAO M, JIN F L, et al. Enhanced electrical conductivity and electromagnetic shielding efficiency of epoxy resin using graphene nanoplatelets[J]. Korean Journal of Chemical Engineering, 2022, 39: 1968-1974.
26
ZHANG S, JIANG Y C, SUN Y Y, et al. Preparation of flame retardant and conductive epoxy resin composites by incorporating functionalized multi-walled carbon nanotubes and graphite sheets[J]. Polymers for Advanced Technologies, 2021, 32(5): 2093-2101.
27
SARANGI A K, TRIPATHY L, ANSARI A, et al. Enhancing conductivity in polymers: The role of metal ions in conducting polymer systems[J]. Polymers for Advanced Technologies, 2024, DOI: 10.1002/pat.6505.
28
CATALANOTTI G, KATUNIN A. Modelling the electro-mechanical properties of PPy/epoxy conductive composites[J]. Computational Materials Science, 2016, 113: 88-97.
29
RASHID I A, TARIQ A, FAYZAN SHAKIR H M, et al. Electrically conductive epoxy/polyaniline composite fabrication and characterization for electronic applications[J]. Journal of Reinforced Plastics and Composites, 2022, 41(1/2): 34-45.
30
WANG M, WANG G D, ZHENG M Y, et al. Epoxy resin reinforced high-performance conductive composite foam with ultra-wide pressure sensing range[J]. Electrochimica Acta, 2024, DOI: 10.1016/j.electacta.2024.144109.
31
FENG A L, HOU T Q, JIA Z R, et al. Preparation and characterization of epoxy resin filled with Ti3C2Tx MXene nanosheets with excellent electric conductivity[J]. Nanomaterials, 2020, DOI: 10.3390/nano10010162.
32
HAN X, WANG T, OWUOR P S, et al. Ultra-stiff graphene foams as three-dimensional conductive fillers for epoxy resin[J]. ACS Nano, 2018, 12(11): 11219-11228.
33
MING P, ZHANG Y Y, BAO J W, et al. Bioinspired highly electrically conductive graphene-epoxy layered composites[J]. RSC Advances, 2015, 5: 22283-22288.
34
ZHANG Z Z, WANG P Y, ZHANG W N, et al. A review: Recent advances in conductive aerogels: Assembly strategies, conductive mechanisms, influencing factors and applications[J]. Journal of Materials Science, 2024, 59(11): 4431-4460.
35
YANG X T, FAN S G, LI Y, et al. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework[J]. Composites Part A, Applied Science and Manufacturing, 2020, DOI: 10.1016/j.compositesa.2019.105670.
36
GAO Q, QIN J B, GUO B R, et al. High-performance electromagnetic interference shielding epoxy/Ag nanowire/thermal annealed graphene aerogel composite with bicontinuous three-dimensional conductive skeleton[J]. Composites Part A, Applied Science and Manufacturing, 2021, DOI: 10.1016/j.compositesa.2021.106648.
37
HE Z J, ZHANG W R, ZHANG J, et al. Enhancing the electromagnetic interference shielding of epoxy resin composites with hierarchically structured MXene/graphene aerogel[J]. Composites Part B, Engineering, 2024, DOI: 10.1016/j.compositesb.2024.111230.
38
ZHENG T, MORTEZA S S, PILLA S. Polydopamine coating improves electromagnetic interference shielding of delignified wood-derived carbon scaffold[J]. Journal of Materials Science, 2021, 56(18): 10915-10925.
39
王彩华,尚泽阳,胡庆祥,等.温度对环氧树脂基复合泡沫材料力学性能的影响[J].塑料科技,2024,52(6):84-88.
40
GAO Q, ZHANG Y, ZHANG S, et al. Hierarchical structured epoxy/reduced graphene oxide/Ni-chains microcellular composite foam for high-performance electromagnetic interference shielding[J]. Composites Part A, Applied Science and Manufacturing, 2023, DOI: 10.1016/j.compositesa.2023.107536.
41
DING Y Y, QI C Q, CHEN Q F, et al. Computational modeling and simulation of temperature field evolution during the chemical foaming of epoxy foams[J]. Polymer Engineering and Science, 2024, 64(3): 1312-1325.
42
YANG J M, YANG Y Q, DUAN H J, et al. Light-weight epoxy/nickel coated carbon fibers conductive foams for electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(8): 5925-5930.
43
XU Y, LI Y, BAO J J, et al. Rigid thermosetting epoxy/multi-walled carbon nanotube foams with enhanced conductivity originated from a flow-induced concentration effect[J]. RSC Advances, 2016, 6(44): 37710-37720.
44
LEEMSUTHEP A, ANUSHA L, ZUNAIDA Z, et al. Morphology and conductive properties of carbon black-and graphite-filled conductive epoxy micro-porous[J]. IOP Conference Series: Materials Science and Engineering, 2020, DOI: 10.1088/1757-899X/957/1/012034.
45
SONU S S, NISHA R, INDU C. Multifunctional aerogels: A comprehensive review on types, synthesis and applications of aerogels[J]. Journal of Sol-Gel Science and Technology, 2023, 105(2): 324-336.
46
WANG L J, YANG X, JIANG T H, et al. Cell morphology, bubbles migration, and flexural properties of non‐uniform epoxy foams using chemical foaming agent[J]. Journal of Applied Polymer Science, 2014, DOI: 10.1002/app.41175.
47
陈欢庆,郑水蓉,孙曼灵.环氧泡沫塑料的研究与应用[J].粘接,2009,30(2):71-75.
48
LING Y J, CHEN Y C, YAO S, et al. Numerical simulation for bubble growth during supercritical CO2 foaming epoxy resin process based on chemorheology[J]. Journal of Applied Polymer Science, 2024, DOI: 10.1002/app.55162.
49
渠亚男,谢永江,仲新华,等.利用空心微球制备超轻泡沫玻璃及其性能研究[J].材料导报,2024,38(4):119-123.

评论

PDF(1200 KB)

Accesses

Citation

Detail

段落导航
相关文章

/