
SBS/SBR/胶粉复合改性沥青与高黏改性沥青性能对比研究
孙吉书, 郭新茹, 冯德瑜, 郭艳芳
SBS/SBR/胶粉复合改性沥青与高黏改性沥青性能对比研究
Comparison Study of Properties of SBS/SBR/Rubber Powder Composite Modified Asphalt with High Viscosity Modified Asphalt
为了开发一种排水路面所用高黏改性沥青,利用苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、丁苯橡胶(SBR)、胶粉、硫黄粉复配制备一种高黏复合改性沥青(HVMA-4),将常见的3种高黏改性沥青作为对照组进行对比。通过零剪切黏度试验、动态流变试验以及弯曲流变试验分别评价HVMA-4复合改性沥青以及对照组的黏度性能、高温性能和低温性能,并用红外光谱和扫描电镜对复合改性沥青的结构和微观形貌进行分析。结果表明:HVMA-4的高温流变性能最好,在68 ℃时,HVMA-4较HVMA-1、HVMA-2、HVMA-3分别提升93.9%、82.1%和68.8%。HVMA-4抗车辙能力表现更为突出,低温抗裂性能以及抗永久变形能力更强。微观结果表明,3种改性剂在沥青中分布均匀并形成三维网状结构,HVAM-4的形成既有物理变化也有化学变化,沥青分子间的稳定性得到提高。
In order to develop a high viscosity modified asphalt for drainage pavement, styrene-butadiene-styrene block copolymer (SBS), styrene-butadiene rubber (SBR), rubber powder and sulfur powder were combined to prepare a high viscosity modified asphalt (HVMA-4), and three common high viscosity modified asphalt were compared as control group. Zero shear viscosity test, dynamic rheological test and bending rheological test were used to evaluate the viscosity, high temperature and low temperature properties of the HVMA-4 composite modified asphalt and the control group, respectively. The structure and microstructure of the composite modified asphalt were analyzed by infrared spectroscopy and scanning electron microscopy. The results showed that HVMA-4 had the best high-temperature rheological properties, with 93.9%, 82.1% and 68.8% improvement at 68 ℃ over HVMA-1, HVMA-2, and HVMA-3, respectively. HVMA-4 showed more outstanding rutting resistance, low temperature cracking resistance and permanent deformation resistance. The microscopic results showed that the three modifiers were uniformly distributed in asphalt and form a three-dimensional network structure. The formation of HVAM-4 had both physical and chemical changes, and the intermolecular stability of asphalt was improved.
Modified asphalt / Composites / Performance analysis / Micro-mechanism
U414
1 |
周志刚,陈功鸿,张红波,等.橡胶粉/SBS与高黏剂复合改性沥青的制备及性能研究[J].材料导报,2021,35(6):6093-6099.
|
2 |
王冰洁,朱健锋,韩颖.国土空间规划背景下辽宁省海绵城市规划研究[J].智能城市,2023,9(8):60-62.
|
3 |
周育名,魏建国,时松,等.多聚磷酸及橡胶粉复合改性沥青性能[J].长安大学学报:自然科学版,2018,38(5):9-17.
|
4 |
吉泽中,刘嘉伟,徐凯.橡胶/SBS复合改性沥青及其混合料性能研究[J].新型建筑材料,2018,45(4):124-128, 132.
|
5 |
宋光辉.高黏改性沥青的低温性能及黏附特性研究[J].公路,2024,69(1):302-310.
|
6 |
朱晓菲.废胶粉/碳九石油树脂复合改性高黏沥青及其混合料性能评价与对比[J].合成橡胶工业,2022,45(1):69-73.
|
7 |
高磊,吴旷怀.基于正交试验的复合高黏高弹改性沥青制备及性能研究[J].公路,2021,66(12):323-329.
|
8 |
符刘旭.高黏改性型透水沥青混合料路用性能及声发射特性研究[D].长春:吉林大学,2019.
|
9 |
黄卫东,高杰,郝庚任,等.高黏SBS改性沥青的流变性能与化学特性[J].建筑材料学报,2021,24(5):1024-1031, 1038.
|
10 |
周志刚,陈功鸿,张红波,等.胶粉/高黏剂复合改性SBS沥青的性能与改性机理[J].长沙理工大学学报:自然科学版,2020,17(2):1-9.
|
11 |
张晨晨,潘春梅,孙艺涵,等.胶粉/SBS复合改性高模量沥青混合料性能研究[J].中国建材科技,2022,31(6):65-68, 33.
|
12 |
朱雅婧,徐光霁,马涛,等.基于分子动力学模拟的高黏沥青改性与再生研究[J].东南大学学报:自然科学版,2022,52(4):736-743.
|
13 |
骆明金.高黏剂对沥青高温性能的影响分析[J].现代交通技术,2021,18(3):18-22.
|
14 |
李阿坦,谭付良,林江涛,等.不同掺量高黏弹改性剂对高黏弹复合改性沥青性能影响[J].石油沥青,2023,37(5):18-22.
|
15 |
黄志军,王端宜,王显华,等.高黏弹改性沥青制备方法及混合料性能验证[J].石油沥青,2022,36(4):24-30.
|
16 |
祝斯月,陈拴发,秦先涛,等.基于灰关联熵分析法的高黏改性沥青关键指标[J].材料科学与工程学报,2014,32(6):863-867.
|
17 |
|
18 |
雷宁静.废胶粉复合改性高黏沥青制备及其关键指标研究[D].西安:长安大学,2021.
|
19 |
孙吉书,冯德瑜,宋莹,等.基于响应面法的高黏度复合改性沥青中丁苯橡胶/苯乙烯-丁二烯-苯乙烯嵌段共聚物/胶粉的最优掺量[J].合成橡胶工业,2023,46(1):39-44.
|
20 |
宋莉芳,薛亚楠,薛哲,等.天然橡胶/丁苯橡胶胶粉对改性沥青性能的影响[J].橡胶工业,2023,70(10):789-795.
|
21 |
孙吉书,耿艺通,肖田,等.改性硅藻土/SBS/高黏剂复合改性沥青研究[J].热固性树脂,2022,37(5):14-21.
|
22 |
吕大春,刘斌清,田华.高黏改性沥青结合料的流变特性[J].材料科学与工程学报,2021,39(5):820-825.
|
23 |
刘志强.废胶粉/SBR复合改性沥青混合料性能影响研究[J].合成材料老化与应用,2023,52(4):66-68.
|
24 |
唐东,丛玉凤,黄玮,等.新型丁苯橡胶复合改性沥青的改性机理研究[J].化工新型材料,2018,46(6):214-217.
|
25 |
刘国明.共混胶粉改性沥青性能及作用机理研究[D].西安:西安科技大学,2020.
|
26 |
|
27 |
严江.高黏度改性沥青研制及评价方法研究[D].西安:长安大学,2019.
|
28 |
王仕峰,王迪珍,钟汉权.交联SBR改性沥青的研究[J].橡胶工业,2002(4):210-214.
|
29 |
李洪强,王涛,孙文超.接枝交联SBR改性道路沥青的研究[J].石油沥青,2020,34(2):38-42, 49.
|
/
〈 |
|
〉 |