可交联磷氮化合物对EVA/MH复合材料阻燃与力学性能的影响

徐新文, 阮增, 尹昊琰, 高尚, 凌宗勇, 李学良, 丁运生

PDF(2794 KB)
PDF(2794 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (12) : 20-25. DOI: 10.15925/j.cnki.issn1005-3360.2024.12.004
理论与研究

可交联磷氮化合物对EVA/MH复合材料阻燃与力学性能的影响

作者信息 +

Effect of Cross-Linkable Phosphorus-Nitrogen Compounds on Flame-Retardant and Mechanical Properties of EVA/MH Composites

Author information +
History +

摘要

为了在提高乙烯-醋酸乙烯酯共聚物(EVA)基复合材料低烟无卤阻燃性能的同时保持或提升其力学性能,研究以油胺(OA)和氨基三亚甲基膦酸(ATMP)为原料,合成含双键的磷氮化合物(OT),并通过熔融共混引入乙烯-醋酸乙烯酯共聚物/氢氧化镁(EVA/MH)共混复合体系。采用傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、旋转流变仪、差示扫描量热仪(DSC)、万能试验机和极限氧指数(LOI)测试仪等对OT和EVA/MH复合材料的结构和性能进行测试与表征。结果表明:OT的引入可改善材料交联结构,并防止分子链的断裂;OT可提高MH在聚合物基体中的分散性,促进EVA的结晶,提高材料的阻燃和力学性能。当OT添加量为2份时,复合材料的拉伸强度为13.8 MPa,断裂伸长率为432%,LOI达到39.0%,材料兼具优良的阻燃及力学性能。

Abstract

In order to enhance the low smoke halogen-free flame retardant properties of ethylene vinyl acetate copolymer (EVA) based composite materials while maintaining or improving their mechanical properties, a study was conducted to synthesize a phosphorus-nitrogen compound (OT) containing double bonds using oleylamine (OA) and amino trimethylene phosphonic acid (ATMP) as raw materials, and then introduce it into the ethylene-vinyl acetate copolymer/magnesium hydroxide (EVA/MH) blend composite system through melt blending. The structure and properties of the OT and EVA/MH composite materials were tested and characterized using a Fourier transform infrared spectrometer (FTIR), a scanning electron microscope (SEM), a rotational rheometer, a differential scanning calorimeter (DSC), a universal testing machine and a limiting oxygen index (LOI) tester. The results show that the introduction of OT optimizes the cross-linking structure of the material and prevents the breakage of the molecular chains. OT promotes the dispersion of MH within the polymer matrix, aids in the crystallization of EVA, and notably enhances the flame-retardant and mechanical characteristics of the material. The composites display a tensile strength of 13.8 MPa, an elongation at break of 432%, and an LOI of 39.0% with the addition of 2 phr of OT, demonstrating their outstanding flame retardant and mechanical properties.

关键词

乙烯-醋酸乙烯酯共聚物 / 复合材料 / 磷氮化合物 / 无卤阻燃 / 交联

Key words

Ethylene vinyl acetate copolymer / Composites / Phosphorus-nitrogen compounds / Halogen-free flame retardant / Crosslinking

中图分类号

TQ317 / TB332

引用本文

导出引用
徐新文 , 阮增 , 尹昊琰 , . 可交联磷氮化合物对EVA/MH复合材料阻燃与力学性能的影响. 塑料科技. 2024, 52(12): 20-25 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.12.004
XU Xin-wen, RUAN Zeng, YING Hao-yan, et al. Effect of Cross-Linkable Phosphorus-Nitrogen Compounds on Flame-Retardant and Mechanical Properties of EVA/MH Composites[J]. Plastics Science and Technology. 2024, 52(12): 20-25 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.12.004

参考文献

1
WANG G H, HE M, JIANG D F, et al. The properties of neutron shielding and flame retardant of EVA polymer after modified by EB accelerator[J]. Radiation Physics and Chemistry, 2017, 140: 322-327.
2
NASKAR K, MOHANTY S, NANDO G B. Development of thin-walled halogen-free cable insulation and halogen-free fire-resistant low-smoke cable-sheathing compounds based on polyolefin elastomer and ethylene vinyl acetate blends[J]. Journal of Applied Polymer Science, 2007, 104(5): 2839-2848.
3
甄建斌,伊佳佳,姬占有,等.EPDM/EVA共混发泡胶料的制备和性能研究[J].橡胶工业,2022,69(11):812-821.
4
胡红伟,李建喜.海泡石与硼酸锌二元阻燃体系对EVA复合材料的阻燃和抑烟性能的研究[J].塑料科技,2022,50(11):87-92.
5
LIU J C, HE Y P, CHANG H B, et al. Simultaneously improving flame retardancy, water and acid resistance of ethylene vinyl acetate copolymer by introducing magnesium hydroxide/red phosphorus co-microcapsule and carbon nanotube[J]. Polymer Degradation and Stability, 2020, DOI: 10.1016/j.polymdegradstab.2019.109051.
6
MENG W H, WU H J, WU R F, et al. Fabrication of surface-modified magnesium hydroxide using Ni2+ chelation method and layer-by-layer assembly strategy: Improving the flame retardancy and smoke suppression properties of ethylene-vinyl acetate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, DOI: 10.1016/j.colsurfa.2020.125712.
7
WANG Y L, LI Z P, LI Y Y, et al. Spray-drying-assisted layer-by-layer assembly of alginate, 3-aminopropyltriethoxysilane, and magnesium hydroxide flame retardant and its catalytic graphitization in ethylene-vinyl acetate resin[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10490-10500.
8
YAO M, WU H J, LIU H, et al. In-situ growth of boron nitride for the effect of layer-by-layer assembly modified magnesium hydroxide on flame retardancy, smoke suppression, toxicity and char formation in EVA[J]. Polymer Degradation and Stability, 2021, DOI: 10.1016/j.polymdegradstab.2020.109417.
9
SONG T, XU F, QIN Z L, et al. Toughed interface of Mg(OH)2/polymer composites with improved mechanical performance via intramolecular "bridge"[J]. Applied Surface Science, 2023, 607: DOI:10.1016/j.apsusc.2022.155100.
10
GUO F, ZHANG Y Z, CAI L P, et al. NiFe Prussian blue analogue nanocages decorated magnesium hydroxide rod for enhancing fire safety and mechanical properties of epoxy resin[J]. Composites Part B: Engineering, 2022, DOI: 10.1016/j.compositesb.2022.109650.
11
GU P J, JIANG T K, ZHANG J. Development of a near-infrared reflecting EVA cooling compound with flame retardant property[J]. Journal of Vinyl and Additive Technology, 2022, 28(1): 172-183.
12
LIU H H, WANG S H, SUN J, et al. Improving flame retardant and mechanical properties of ethylene-vinyl acetate by cured compound silicone decorated magnesium hydroxide[J]. Journal of Materials Science, 2022, 57(3): 2243-2256.
13
ZHANG W N, LI X G, SHAN Z Q, et al. Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber[J]. Applied Surface Science, 2019, 465: 740-746.
14
LAN S J, LI L J, XU D F, et al. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process[J]. Applied Surface Science, 2016, 382: 56-62.
15
LIU H, WU H J, SONG Q Y, et al. Core/shell structure magnesium hydroxide@polyphosphate metal salt: preparation and its performance on the flame retardancy for ethylene vinyl acetate copolymer[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(4): 1341-1350.
16
XU S Y, HAN Y, ZHOU C, et al. A biobased flame retardant towards improvement of flame retardancy and mechanical property of ethylene vinyl acetate[J]. Chinese Chemical Letters, 2023, DOI: 10.1016/j.cclet.2022.02.008.
17
ZHANG S, BU X X, GU X Y, et al. Improving the mechanical properties and flame retardancy of ethylene-vinyl acetate copolymer by introducing bis [3-(triethoxysilyl) propyl] tetrasulfide modified magnesium hydroxide[J]. 2017, 49(7): 607-614.
18
潘燕凯.电缆绝缘树脂用交联聚乙烯的制备及其改性研究进展[J].塑料科技,2023,51(3):99-105.
19
TIAN N, NING R C, KONG J. Self-toughening of epoxy resin through controlling topology of cross-linked networks[J]. Polymer, 2016, 99: 376-385.
20
WANG Z Y, JIANG B, ZHANG Y H, et al. Influence of crosslink density on thermal, mechanical and dielectric properties of cross-linked fluorinated poly(aryl ether)s[J]. European Polymer Journal, 2022, 172: 111244-111249.
21
BABA Y, GAO G H, HARA M, et al. Mechanical properties of homogeneous polymer networks prepared by star polymer synthesis methods[J]. Macromolecules, 2021, 54(22): 10468-10476.
22
VOTHI H, NGUYEN C, PHAM L H, et al. Novel nitrogen-phosphorus flame retardant based on phosphonamidate: Thermal stability and flame retardancy[J]. ACS Omega, 2019, 4(18): 17791-17797.
23
KIM H H, SIM M J, LEE J C, et al. The effects of chemical structure for phosphorus-nitrogen flame retardants on flame retardant mechanisms[J]. Journal of Materials Science, 2023, 58(15): 6850-6864.
24
SHEN J X, LIN X S, LIU J, et al. Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers[J]. Macromolecules, 2019, 52(1): 121-134.
25
RAZAVI-NOURI M, SALAVATI M. Rheological percolation, gel-like behavior and electrical conductivity of multi-walled carbon nanotubes filled ethylene-vinyl acetate copolymer/acrylonitrile-butadiene rubber nanocomposites[J]. Polymer Composites, 2024, 45(2): 1422-1436.
26
SOUILLARD C, CAVAILLÉ J Y, CHAZEAU L, et al. Dynamic mechanical relaxation of cross-linked styrene-butadiene polymers containing free chains: Possibility of reptation[J]. Polymer, 2014, 55(20): 5218-5225.
27
SINGH H, SHARMA S. Hydration of linear alkanes is governed by the small length-scale hydrophobic effect[J]. Journal of Chemical Theory and Computation, 2022, 18(6): 3805-3813.
28
MUKHOPADHYAY A. SEM study of worn surface morphology of an indigenous 'EPDM' rubber[J]. Polymer Testing, 2016, 52: 167-173.

基金

芜湖市重点研发项目(2022yf46)
安徽省市场监督管理局科技计划项目(2022MK025)
安徽省博士后研究人员科研活动经费资助项目(2021A488)

评论

PDF(2794 KB)

Accesses

Citation

Detail

段落导航
相关文章

/