
基于Digimat RVE的玄武岩纤维增强聚丙烯复合材料
杜凌, 严继康, 鲁兴宇, 廖俊杰, 谭鸿洋
基于Digimat RVE的玄武岩纤维增强聚丙烯复合材料
Basalt Fiber Reinforced Polypropylene Composites Based on Digimat RVE
通过Digimat软件对玄武岩纤维增强聚丙烯(BF/PP)复合材料进行代表性体积单元(RVE)建模,研究纤维含量、纤维长径比和纤维取向对复合材料力学性能的影响。模拟结果表明,玄武岩纤维质量分数为5%、10%、20%和30%的BF/PP复合材料相较于基体材料的弹性模量分别提升16.43%、79.08%、214.03%和406.01%,玄武岩纤维长径比大于200对BF/PP复合材料的弹性模量影响较小,BF/PP复合材料的弹性模量随着玄武岩纤维取向偏离载荷方向程度的变大而降低。实验结果表明,玄武岩纤维质量分数从5%增至30%,BF/PP复合材料的弹性模量提升38%,实验结果与模拟实验的结果误差为128.7%。Digimat软件对玄武岩纤维含量对BF/PP复合材料的力学性能影响预测趋势较为精确,可为实际生产提供参考。
The representative volume element (RVE) modeling of basalt fiber reinforced polypropylene composites (BF/PP) was carried out by Digimat software. The effects of fiber content, fiber aspect ratio and fiber orientation on mechanical properties of the composites were analyzed. The simulation results showed that the elastic modulus of BF/PP composites with basalt fiber mass fraction of 5%, 10%, 20% and 30% compared to the matrix material was increased by 16.43%, 79.08%, 214.03% and 406.01% , respectively. The effect of basalt fiber aspect ratio greater than 200 on the elastic modulus of BF/PP composites was relatively small. The elastic modulus of BF/PP composites decreased with the increase of basalt fiber orientation deviating from the load direction. The experiment results showed that the elastic modulus of BF/PP composites increased by 38% when the basalt fiber content increased from 5% to 30%. The error between the experimental results and the simulation results was 128.7%. The Digimat software accurately predicted the influence of different contents of basalt fibers on the mechanical properties of BF/PP composites, providing a reference for actual production.
Digimat / 玄武岩纤维 / 弹性模量 / 聚丙烯 / 等效体积单元
Digimat / Basalt fiber / Elastic modulus / Polypropylene / Equivalent volume element
TB332
1 |
唐春红.短玄武岩纤维增强聚丙烯复合材料性能研究[D].长沙:湖南大学,2020.
|
2 |
宋潝天,王犁,颜贵龙,等.玄武岩纤维粉末/氟橡胶复合材料的制备及性能研究[J].橡胶工业,2024,71(9):676-682.
|
3 |
|
4 |
|
5 |
李涛,严波,彭雄奇,等.玻纤增强注塑件的均匀化弹性力学参数研究[J].复合材料学报,2015,32(4):1153-1158.
|
6 |
|
7 |
|
8 |
申晓.涤纶纤维表面改性处理及其复合材料性能研究[D].杭州:浙江理工大学,2018
|
9 |
应淑妮.玄武岩纤维的性能及其增强热塑性复合材料的界面改性[D].上海:华东理工大学,2011.
|
10 |
|
11 |
|
12 |
郑晓霞,郑锡涛,缑林虎.多尺度方法在复合材料力学分析中的研究进展[J].力学进展,2010,40(1):41-56.
|
13 |
丁智平,黄达勇,荣继刚,等.长玻纤增强复合材料注塑成型构件强度分析[J].材料工程,2018,46(10):111-110.
|
14 |
蔡力亚,赵克刚,李剑峰,等.短玻纤增强复合材料的性能及其在车身上的应用[J].华南理工大学学报,2020,48(3):108-115.
|
15 |
|
16 |
孙胜然,吴东乐,罗嘉倩,等.基于Digimat RVE 的碳纤维增强聚丙烯复合材料性能分析[J].中国造纸学报,2021,36(1):44-51.
|
17 |
|
18 |
任超,陈建钧,潘红良.随机短纤维增强复合材料弹性模量预测模型[J].复合材料学报,2012,29(4):191-194.
|
19 |
丁智平,黄达勇,荣继刚,等.注塑成型短玻纤增强复合材料各向异性弹性常数预测方法[J].机械工程学报,2017,21:126-134.
|
20 |
泰若森,孙守政,韩振宇,等.3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J].材料导报,2022,36(17):200-208.
|
21 |
柯毓才,李振福,潘平来,等.纤维长径比对环氧复合材料动态力学性能的影响.[J].复合材料学报,1991,8(2):51-56.
|
/
〈 |
|
〉 |