
低剂量γ辐照微交联结构对不同支链长度线性低密度聚乙烯的流变性能影响
雷亨, 毛选之, 张帆, 张茂江, 邢哲, 吴国忠
低剂量γ辐照微交联结构对不同支链长度线性低密度聚乙烯的流变性能影响
Effect of Micro-Crosslinking Structure of Low Dose γ-Irradiation on Rheological Properties of Linear Low-Density Polyethylene with Different Branch Chain Lengths
为了在不影响吹膜、流延、挤出等工艺的前提下提升聚乙烯(PE)制品性能,通过低剂量γ射线辐照线性低密度聚乙烯(LLDPE)实现材料的微交联,探究低吸收剂量和退火温度对3种不同支链长度LLDPE(牌号:2045G、2645G和7042)的微交联结构和流变行为的影响。结果表明:3种LLDPE的储能模量和复数黏度均随吸收剂量增加而增加,损耗因子却降低,同时退火温度对流变参数无明显影响。当吸收剂量为5 kGy时,7042、2645G和2045G的储能模量分别增加815%、580%和388%,说明LLDPE支链长度越短,其微交联程度越高。结果表明,低剂量辐照可使LLDPE发生微交联,有效提升其流变性能和熔体强度,凸显了通过低剂量辐照微交联改性聚烯烃产品的潜力。
In order to improve the performance of polyethylene (PE) products without changing the existing process of film blowing, casting, extrusion, low dose γ irradiation was carried out to realize the micro-crosslinking of linear low-density polyethylene (LLDPE) materials in this work. The effects of low absorbed dose and annealing temperature on the micro-crosslinking structure and rheological behavior of three types of LLDPE with different branch chain lengths (Grades: 2045G, 2645G and 7042) were investigated. The results showed that the storage modulus and complex viscosity of the three types of LLDPE increased with the increase of absorbed dose, yet the damping factor decreased. The rheological properties of LLDPE were unaffected by the annealing temperature. When the absorbed dose was 5 kGy, the storage modulus of 7042, 2645G and 2045G increased by 815%、580% and 388%, respectively, indicating that the shorter the branch chain length of LLDPE, the higher the degree of micro-crosslinking. These results demonstrated that the three types of LLDPE with low absorbed dose formed micro-crosslinking structures, effectively improving their rheological properties and melt strength, highlighting the potential for modifying polyolefin products through micro-crosslinking structure of low dose irradiation.
γ辐照 / 低吸收剂量 / 线性低密度聚乙烯 / 微交联 / 流变性能
γ irradiation / Low absorbed dose / LLDPE / Micro-crosslinking / Rheological property
TQ325.12 / TL13
1 |
张师军,乔金樑.聚乙烯树脂及其应用[M].北京:化学工业出版社,2011.
|
2 |
吴长江.我国聚烯烃产业技术的现状与发展建议[J].科学通报,2022,67(17):1853-1862.
|
3 |
宋倩倩,王红秋,王春娇,等.中国聚乙烯市场发展前景分析[J].合成树脂及塑料,2021,38(2):71-76, 79.
|
4 |
郝爱,冯普凌,张耀亨,等.聚乙烯市场现状分析及生产技术进展[J].弹性体,2016,26(3):80-85.
|
5 |
于瑶瑶.聚乙烯塑料的改性及应用研究[D].淄博:山东理工大学,2021.
|
6 |
李占冲.聚乙烯塑料的复合改性技术研究[D].淄博:山东理工大学,2023.
|
7 |
孔令光.辐射技术在聚乙烯改性的研究进展[J].广州化工,2020,48(12):10-11, 14.
|
8 |
傅垣洪.辐射技术在塑料加工中的应用研究进展[J].合成树脂及塑料,2018,35(2):83-87, 93.
|
9 |
文鑫,严坤,李雪丽,等.辐射交联超高分子量聚乙烯热稳定性及蠕变性能[J].辐射研究与辐射工艺学报,2022,40(1):42-50.
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
王玉婵.聚乙烯树脂及现今市场应用特点的分析展望[J].化学与粘合,2019,41(1):57-61, 78.
|
19 |
王亨缇.聚烯烃的辐射效应及其流变行为研究[D].北京:中国科学院大学(中国科学院上海应用物理研究所),2018.
|
20 |
|
21 |
|
22 |
江猛,孙小杰,陈兰兰,等.微交联对高密度聚乙烯流变性能的影响[J].塑料科技,2021,49(4):10-14.
|
23 |
王俊,张瑜,李林,等.树枝状含氟流变剂的合成及其对HDPE流变性能的影响[J].塑料科技,2023,51(4):26-29.
|
24 |
邸麟婷,吴冬,魏福庆,等.聚乙烯结构对交联性能的影响[J].现代塑料加工应用,2023,35(6):21-24.
|
25 |
吴春霜,胡斌,朱军.聚乙烯熔体强度测试方法及其影响因素[J].上海塑料,2015(3):55-60.
|
26 |
|
27 |
陈晓明,张璟焱,徐文总,等.关于高分子液体“高黏度”和“剪切变稀”的讨论[J].高分子通报,2019(6):68-71.
|
28 |
|
29 |
|
30 |
|
31 |
刘建叶.聚烯烃弹性体自由基历程改性的化学流变学研究[D].上海:上海交通大学,2010.
|
/
〈 |
|
〉 |