PBAT/滑石粉复合材料的非等温结晶动力学研究

熊煦, 郭世成, 陈晓松, 马立波, 李珊珊, 蒋晓威

PDF(2065 KB)
PDF(2065 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (11) : 52-58. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.010
理论与研究

PBAT/滑石粉复合材料的非等温结晶动力学研究

作者信息 +

Study on Non-Isothermal Crystallization Kinetics of PBAT/talc Powder Composites

Author information +
History +

摘要

利用差示扫描量热法结合Avrami方程研究聚对苯二甲酸己二酸丁二醇酯(PBAT)和聚对苯二甲酸己二酸丁二醇酯/滑石粉复合材料(PBAT/talc)的非等温结晶动力学,根据Avrami方程的Jeziorny法和莫志深法对数据进行处理,并利用Kissinger法计算PBAT及其复合材料的非等温结晶活化能。结果表明:适量的滑石粉在PBAT基体中可起到异相成核作用,提高了PBAT的结晶温度和结晶速率,使晶粒尺寸减小;当talc质量分数为20%时,复合材料的结晶速率最快,非等温结晶活化能绝对值最大;但当talc含量过多时,复合材料熔体黏度明显增大,PBAT分子链运动受阻,进行规整有序排列的速度减小,导致结晶速率和非等温结晶活化能绝对值下降。

Abstract

The non-isothermal crystallization behavior and kinetics of PBAT, PBAT/talc powder composites was studied by differential scanning calorimentry combined with the Avrami equation. The modified Avrami theories of Jeziorny and Mo's method were used to analyze the data. The activation energy of non-isothermal crystallization of PBAT and PBAT/talc powder composites were calculated by Kissinger's method. The results showed that proper talc powder had the effect of heterogeneous nucleation in crystallization, increased the crystallization temperature and crystallization rate of PBAT, and decreased the grain size. When the mass fraction of talc powder were 20%, the crystallization rate and absolute value of non-isothermal crystallization activation energy reached the highest value. However, when the talc content is too high, the melt viscosity of the composites increases significantly, the movement of the PBAT molecular chain is blocked, and the speed of regular and orderly arrangement decreases, resulting in a decrease in the crystallization rate and the absolute value of non-isothermal crystallization activation energy.

关键词

聚对苯二甲酸己二酸丁二醇酯 / 滑石粉 / 差示扫描量热法 / 非等温结晶动力学 / 结晶活化能

Key words

Poly(adipic acid)/butylene terephthalate / Talc powder / Differential scanning calorimetry / Non-isothermal crystallization kinetics / Crystallization activation energy

中图分类号

TQ323.4 / TB332

引用本文

导出引用
熊煦 , 郭世成 , 陈晓松 , . PBAT/滑石粉复合材料的非等温结晶动力学研究. 塑料科技. 2024, 52(11): 52-58 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.010
XIONG Xu, GUO Shi-cheng, CHEN Xiao-song, et al. Study on Non-Isothermal Crystallization Kinetics of PBAT/talc Powder Composites[J]. Plastics Science and Technology. 2024, 52(11): 52-58 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.010

参考文献

1
李建军.塑料工业:绿色低碳循环[J].塑料工业,2022,5(6):1-17.
2
QU J, HUANG Z X, YANG Z T, et al. Industrial-scale polypropylene-polyethylene physical alloying toward recycling[J]. Engineering, 2022, 9(2): 95-100.
3
王琪,瞿金平,石碧,等.我国废弃塑料污染防治战略研究[J].中国工程科学,2021,23(1):160-166.
4
ZHU L, XIE C Y, CHEN L K, et al. Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution[J]. Ecotoxicology and Environmental Safety, 2023, DOI: 10.1016/j.ecoenv.2023.114818.
5
孙文潇,杨帆,侯梦宗,等.环境中的微塑料污染及降解[J].中国塑料,2023,37(11):117-126.
6
张涛,钟永红,聂绍丽,等.可生物降解材料材质分析研究进展[J].塑料科技,2023,51(11):99-104.
7
PAN H W, WANG Y, JIA S L, et al. Biodegradable poly(butylene adipate-co-terephthalate)/poly(glycolic acid) films: Effect of poly(glycolic acid) crystal on mechanical and barrier properties[J]. Chinese Journal of Polymer Science, 2023, 41(7):1123-1132.
8
LUO S S, SHI M, SONG J L, et al. Effect of chain extender on morphologies and properties of PBAT/PLA composites[J]. Journal of Thermoplastic Composite Materials, 2023, 36(3):1175-1186.
9
AVERSA C, BARLETTA M, CAPPIELLO G, et al. Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review[J]. European Polymer Journal, 2022, DOI: 10.1016/j.eurpolymj.2022.111304.
10
DENIAL M, KARTHIKEYAN S, GODSE R, et al. Poly(butylene adipate-co-terephthalate) polyester synthesis process and product development[J]. Polymer Science, Series C, 2021, 63(1): 102-111.
11
李露露,张成峰,张先明.不同共聚组成聚己二酸丁二醇酯-对苯二甲酸丁二醇酯的制备及相对分子质量[J].高分子材料科学与工程,2023,39(9):19-26.
12
胡晨曦,王宇韬,吕明福,等.滑石粉改性PBAT/PLA复合材料的制备与性能研究[J].塑料科技,2022,44(7):44-48.
13
苗蔚,程文喜,张天羽,等.木质纤维和滑石粉混合填充PBS的制备及性能[J].工程塑料应用,2022,50(4):26-30.
14
丁蕊,徐昂,刘倚帆,等.滑石粉增强增韧聚乳酸生物可降解材料进展[J].塑料,2022,51(3):58-65.
15
黄秀龙,张华,季欣,等.滑石粉对PLA/PBAT 共混物非等温结晶行为的影响[J].塑料科技,2018,46(10):45-50.
16
熊煦,张枝苗,马立波,等.PP/PP-g-MAH/废PCB粉复合材料非等温结晶动力学研究[J].中国塑料,2018,32(7):72-77.
17
JEZIORNY A. Parameters Characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC[J]. Polymer, 1978, 19: 1142-1144.
18
杨红艳,王国芳,王伟,等.磷石膏增强聚丙烯复合材料的非等温结晶动力学[J].合成树脂及塑料,2022,39(4):65-69.
19
ZHANG H X, PARK M J, MOON Y K, et al. An efficient organic additive to control the crystallization rate of aliphatic polyketone: A non-isothermal crystallization kinetics study[J]. Chinese Journal of Polymer Science, 2017, 35(4): 547-557.
20
OZAWA T. Kinetics of non-isothermal crystallization[J]. Polymer, 1971, 12: 150-158.
21
周志斌,刘跃军,刘小超.改性纳米SiO2填充PLA/PBAT复合体系的结晶动力学研究[J].包装学报,2017,9(3):9-24.
22
莫志深.一种研究聚合物非等温结晶动力学的方法[J].高分子学报,2008(7):656⁃661.
23
LIU T, MO Z, WANG S, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)[J]. Polymer Engineering &Science,1997, 37(3): 568-575.
24
WANG Z Q, HU G S, ZHANG J T, et al. Non-isothermal crystallization kinetics of nylon10T and nylon10T/1010 copolymers: Effect of sebacic acid as a third comonomer[J]. Chinese Journal of Chemical Engineering, 2017, 25(7): 963-970.
25
蒋珊,谢聪,杜欣瑶,等.PA66/PA6I6T共混物非等温结晶动力学及性能[J].高分子材料科学与工程,2020,36(5):98-106.

基金

常州工程职业技术学院卓越人才培养改革试点项目(ZY2020-08)

评论

PDF(2065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/