热重分析法研究硅橡胶复合绝缘子热解动力学

李子由, 雷鸣东, 李强, 干强, 赵银山, 陈健哲

PDF(2123 KB)
PDF(2123 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (11) : 30-36. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.006
理论与研究

热重分析法研究硅橡胶复合绝缘子热解动力学

作者信息 +

Study of Pyrolysis Kinetics of Silicone Rubber Composite Insulators by Thermogravimetric Analysis

Author information +
History +

摘要

通过热重分析(TGA)研究硅橡胶绝缘子(SiR)在氮气(N2)和空气环境中的热解动力学。将3种不同的等转化模型Flynn-Wall-Ozawa(FWO)、Kissinger-Akahira-Sunose(KAS)和Friedman(FR)方法应用于TGA结果分析,以计算活化能和指数前因子。在N2气氛下采用FWO、KAS和FR方法计算的平均活化能分别为421.46、431.60、433.98 kJ/mol,指数前因子范围为109~1016,热解与表面积无关。在空气气氛下采用FWO、KAS和FR方法计算的平均活化能分别为127.21、120.93、123.38 kJ/mol,指前因子范围为108~109,热解受表面积控制。在N2气氛下,反应的热力学性质,如焓变(ΔH)、吉布斯自由能(ΔG)和熵变(ΔS)远高于空气气氛,证实了N2气氛下反应的复杂性。研究结果有助于加深对SiR燃烧机理的理解,并为其作为一种更有效的耐高温材料的可行性研究提供参考。

Abstract

The pyrolysis kinetics of silicone rubber insulators (SiR) in nitrogen (N2) and air environments were studied by thermogravimetric analysis (TGA). Three transformation models, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Friedman (FR) methods, were applied to calculate activation energy and pre-exponential factors. The average activation energies of FWO, KAS, and FR methods under N2 atmosphereare were 421.46, 431.60, 433.98 kJ/mol, respectively. The pre-exponential factor ranged from 109 to 1016, which illustrated that the pyrolysis was independent of surface area. Under the air atmosphere, the average activation energies of FWO, KAS, and FR methods were 127.21, 120.93, 123.38 kJ/mol, respectively. The value of pre-exponential factor ranged from 108 to 109, and pyrolysis was controlled by surface area. The thermodynamic properties of the reaction under N2 atmosphere, such as enthalpy changes (ΔH), Gibbs free energy (ΔG) and entropy change (ΔS) were much higher than that under air atmosphere, confirming the complexity of the reaction in N2. The results of the study contribute to a deeper understanding of the combustion mechanism of SiR and provide a reference for its feasibility as a more effective high-temperature resistant material.

关键词

硅橡胶绝缘子 / 热重分析 / 热解动力学 / 活化能

Key words

SiR / TGA / Pyrolysis kinetics / Activation energy

中图分类号

TQ33 / TM216

引用本文

导出引用
李子由 , 雷鸣东 , 李强 , . 热重分析法研究硅橡胶复合绝缘子热解动力学. 塑料科技. 2024, 52(11): 30-36 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.006
LI Zi-you, LEI Ming-dong, LI Qiang, et al. Study of Pyrolysis Kinetics of Silicone Rubber Composite Insulators by Thermogravimetric Analysis[J]. Plastics Science and Technology. 2024, 52(11): 30-36 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.006

参考文献

1
徐林,曾本忠,王超,等.我国高性能合成橡胶材料发展现状与展望[J].中国工程科学,2020,22(5):128-136.
2
梁曦东,高岩峰,王家福,等.中国硅橡胶复合绝缘子快速发展历程[J].高电压技术,2016,42(9):2888-2896.
3
王鑫,李超芹.硅橡胶的结晶行为及动力学研究[J].橡胶工业,2023,70(5):330-335.
4
ANDRIOT M, DEGROOT J V, MEEKS R, et al. Silicones in industrial applications[M]//Inorganic Polymers. New York:Nova Science Publishers, 2007.
5
HE C, LI B Q, REN Y, et al. How the crosslinking agent influences the thermal stability of RTV phenyl silicone rubber[J]. Materials, 2018, DOI:10.3390/ma12010088.
6
LIU S W, YU J, BIKANE K, et al. Rubber pyrolysis: Kinetic modeling and vulcanization effects[J]. Energy, 2018, 155: 215-225.
7
KORKUT A. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass[J]. Bioresource Technology, 2021, DOI: 10.1016/j.biortech.2021.125438.
8
SORIA-VERDUGO A, MORGANO M T, MAETZING H, et al. Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods[J]. Energy Conversion & Management, 2020, DOI:10.1016/j.enconman.2020.112818.
9
KOSTETSKYY P, BROADBELT L J. Progress in modeling of biomass fast pyrolysis: A review[J]. Energy & Fuels, 2020, 34(12): 15195-15216.
10
LACHAUD J, SCOGGINS J B, MAGIN T E, et al. A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1406-1417.
11
CHACON A L, DEATON B, BESSIRE K B, et al. Chemical and structural degradation of room temperature vulcanizing (RTV) silicone at high temperatures[J]. Polymer Degradation and Stability, 2024, DOI: 10.1016/j.polymdegradstab.2024.110661.
12
Foster C W, SREEVISHNU O, FRANCESCO P. Real-time quantitative imaging of RTV silicone pyrolysis[J]. Polymer Degradation and Stability, 2023, DOI:10.1016/j.polymdegradstab.2023.110403.
13
王雪蓉,王倩倩,刘运传,等.基于热重分析法的苯基硅橡胶热分解行为研究[J].橡胶工业,2021,68(9):699-704.
14
雷超平,莫文雄,栾乐,等.复合绝缘子硅橡胶伞裙热老化特性研究[J].电工技术,2018(22):20-22.
15
郭慧敏,李翔宇,王海彦,等.纤维素和聚丙烯共催化热解热重分析及动力学研究[J].太阳能学报,2017,38(10):2705-2711.
16
刘义彬,马晓波,陈德珍,等.废塑料典型组分共热解特性及动力学分析[J].中国电机工程学报,2010,30(23):56-61.
17
SHIMADA A, SUGIMOTO M, KUDOH H, et al. Degradation mechanisms of silicone rubber (SiR) by accelerated ageing for cables of nuclear power plant[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(1):16-23.
18
孙进,谢诗琪,董翠翠,等.硅橡胶复合绝缘子老化评估的研究进展[J].石油化工,2020,49(2):202-208.
19
AMIN M, AKBAR M, AMIN S. Hydrophobicity of silicone rubber used for outdoor insulation (an overview)[J]. Gan, 2007, 14(10): 837-43.
20
赵欢欢,邢文听,宋香琳,等.玉米秸秆热解特性及动力学分析[J].生物质化学工程,2022,56(4):9-14.
21
叶晓川,曾黎明,张超,等.酚醛树脂固化的非模型拟合动力学研究[J].武汉理工大学学报,2012,34(1):36-40.
22
曹伟伟,朱波,朱文滔,等.基于非等温法的耐高温环氧树脂体系固化反应动力学研究[J].材料工程,2014(8):67-71.
23
马卫东,吕长志,李志国,等.Arrhenius方程应用新方法研究[J].微电子学,2011,41(4):621-626.
24
汤元君,李璇,董隽,等.废弃PVC塑料热解过程多尺度反应动力学特性研究[J].中国塑料,2022,36(5):89-98.
25
姬爱民,杜铎,李若晗.基于多峰高斯拟合和Friedman法对瓜子壳热解特性研究[J].节能,2020,39(1):110-112.
26
WU L, JIANG X G, LV G J, et al. Analysis of the pyrolysis of solid recovered fuel and its sorted components by using TG-FTIR and DAEM[J]. Journal of Thermal Science, 2023, 32 (4): 1671-1683.
27
李先达,钟振兴,杨志,等.污泥稻秆共热解特性及动力学分析[J].桂林理工大学学报,2018,38(1):132-138.

基金

中国南方电网重点科技资助项目(110002022030301SJ0001)

评论

PDF(2123 KB)

Accesses

Citation

Detail

段落导航
相关文章

/