
高强紫外辐照对改性聚乙烯性能的影响
江猛, 孙小杰, 孙苗苗, 李亚飞, 朱鹤翔
高强紫外辐照对改性聚乙烯性能的影响
Effect of High Intensity Ultraviolet Irradiation on Properties of Modified Polyethylene
利用紫外辐照强度为500 W/m2的紫外老化试验箱对添加不同含量复配光稳定剂的改性高密度聚乙烯(HDPE)复合材料进行大剂量紫外老化测试。通过傅里叶红外光谱(FTIR)测试发现,羰基指数与HDPE老化程度存在正相关,复配光稳定剂的添加显著降低HDPE的老化速度。通过旋转流变分析改性HDPE的分子量,发现随着复配光稳定剂添加量的增大,HDPE在老化初期的交联反应速度被抑制得越多。结合上述分析与力学测试结果发现,当改性HDPE材料需要承受200 kWh/m2的紫外辐照总量时,每100份基料中只需添加1.2份复配光稳定剂,改性HDPE材料就可以维持良好的性能,其断裂伸长率、拉伸强度和缺口冲击强度的保持率分别为57.7%、63.8%和105.0%。
The high-dose ultraviolet (UV) aging test of high density polyethylene (HDPE) composites modified by different contents of compound light stabilizer was tested by UV aging test chamber with UV irradiation intensity of 500 W/m2. Fourier transform infrared spectroscopy (FTIR) test showed that the carbonyl index was positively correlated with the aging degree of HDPE. The aging rate of HDPE was significantly reduced by the addition of ultraviolet additives. The molecular weight of modified HDPE was analyzed by rotating rheology, which could found that the crosslinking reaction rate of HDPE was inhibited more with the increase of ultraviolet additives in the early aging period. Combined with the above analysis and mechanical test results, it was found that when the modified HDPE material needed to withstand the total ultraviolet irradiation of 200 kWh/m2, the modified HDPE material could maintain good properties by only adding 1.2 phr compound light stabilizer in 100 phr matrix. The retention rates of elongation at break, tensile strength and notch impact strength were 57.7%, 63.8% and 105.0%, respectively.
高强紫外辐照 / 紫外辐照总量 / 高密度聚乙烯 / 复配光稳定剂
High intensity UV irradation / Total UV exposure / HDPE / Compound light stabilizer
TQ325.12
1 |
何晓蕾,张茂婷,周峰,等.大剂量紫外光辐照下改性PE-HD浮体材料的老化性能[J].工程塑料应用,2018,46(1):84-88.
|
2 |
|
3 |
邓盾,陈争艳,刘毅.漂浮式水上光伏电站用耐候改性HDPE浮体材料的快速老化方法[J].太阳能,2021(9):19-25.
|
4 |
姚培培,李琛.加速紫外老化对聚乙烯薄膜力学性能的影响[J].塑料科技,2013,41(5):66-70.
|
5 |
|
6 |
赵文隆,张清松,吴智华.光屏蔽剂与其填充LLDPE耐光老化性能的关系[J].塑料助剂,2011(3):40-44.
|
7 |
宋歌.纳米SiO2改性制备高原抗强紫外线高韧性功能棚膜研究[D].昆明:昆明理工大学,2011.
|
8 |
张宏元,郭俊杰,姜磊,等.抗老化母粒的制备及在光伏背板用PE膜中的应用研究[J].化工新型材料,2018,46(S1):15-18.
|
9 |
|
10 |
|
11 |
蒋秀亭.高密度聚乙烯(HDPE)土工合成材料光氧老化性能研究[D].上海:东华大学,2016.
|
12 |
申朋龙,倪爱清,王继辉,等.膨胀阻燃高密度聚乙烯抗紫外老化改性[J].高分子材料科学与工程,2021,37(8):110-117.
|
13 |
|
14 |
刘永利,余雯雯,石建高,等.聚乙烯渔网材料的紫外老化与疲劳性能研究[J].海洋渔业,2018,40(6):734-739.
|
15 |
卢琳,石宇野,高瑾,等.聚乙烯塑料在西沙自然环境中光老化行为研究[J].材料工程,2011(3):45-49.
|
16 |
|
17 |
|
18 |
|
19 |
宋力,谢军,胡立伟,等.光稳定剂对水工闸门用PE-HD/高岭土复合材料性能的影响[J].工程塑料应用,2022,50(1):148-153.
|
20 |
|
21 |
代军,晏华,王雪梅,等.分子量分布对低密度聚乙烯光氧老化特性的影响[J].化工学报,2017,68(1):408-417.
|
22 |
|
23 |
姚沣航,王孝鹏,陈杰.受阻胺光稳定剂稳定机理和应用[J].塑料科技,2023,51(6):101-106.
|
24 |
李书森.聚烯烃材料耐迁移型光稳定剂的研究进展[J].塑料助剂,2022(3):49-55.
|
25 |
陈军超.TEMPO捕获过氧自由基的机理研究[D].哈尔滨:哈尔滨工业大学,2018.
|
26 |
高凌雁,王群涛,郭锐,等.聚乙烯的动态流变行为分析[J].合成树脂及塑料,2018,35(4):75-78.
|
27 |
|
28 |
|
29 |
|
30 |
|
/
〈 |
|
〉 |