水润滑条件下填充氟化石墨对超高分子量聚乙烯复合材料的减摩耐磨性能研究

杨飞, 韦志强, 黄国栋, 曹澍

PDF(2251 KB)
PDF(2251 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (11) : 19-23. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.004
理论与研究

水润滑条件下填充氟化石墨对超高分子量聚乙烯复合材料的减摩耐磨性能研究

作者信息 +

Study on Friction Reduction and Wear Resistance of Ultra High Molecular Weight Polyethylene Composites Filled with Fluorinated Graphite Under Water Lubrication Conditions

Author information +
History +

摘要

利用球磨混合和热压成型方法制备高性能的超高分子量聚乙烯/氟化石墨(PE-UHMW/GrF)复合材料。通过接触角测量设备、拉伸试验机和摩擦磨损试验机分别研究复合材料的湿润性、力学性能和水润滑环境下的摩擦学性能。结果表明:添加氟化石墨(GrF)能够显著降低复合材料的亲水性能。添加少量的GrF能够显著提升复合材料的力学性能。当GrF的质量分数达到1.0%时,复合材料的弹性模量、屈服强度和断裂强度比PE-UHMW分别增加39.13%、15.19%和6.60%。在水润滑环境中,GrF在超高分子量聚乙烯(PE-UHMW)基体中起到减小摩擦系数和磨损率的作用。当GrF的质量分数为0.5%时,复合材料的摩擦系数降到最低值0.023 3。GrF提高了PE-UHMW复合材料的抗磨损性能,其磨损机理主要为疲劳磨损。随着GrF添加量的增加,复合材料的抗疲劳磨损的性能逐渐增强。

Abstract

The study prepared high-performance ultra-high molecular weight polyethylene/graphite fluoride (PE-UHMW/GrF) composites using ball milling and hot pressing techniques. The wettability, mechanical properties, and tribological performance of composites in a water-lubricated environment were studied by a contact angle measurement equipment, a tensile testing machine and a friction-wear testing machine, respectively. The results showed that the addition of graphite fluoride (GrF) significantly reduced the hydrophilicity of the composites. Adding a small amount of GrF significantly improved the mechanical properties of the composites. When the mass fraction of GrF reached 1.0%, the elastic modulus, yield strength, and tensile strength of the composites increased by 39.13%, 15.19% and 6.60% compared to PE-UHMW. In the water-lubricated environment, GrF reduced both the friction coefficient and wear rate of the ultra-high molecular weight polyethylene (PE-UHMW) matrix. With a 0.5% mass fraction of GrF, the friction coefficient of the composite dropped to a minimum value of 0.023 3. GrF enhanced the wear resistance of the PE-UHMW composites, with the wear mechanism primarily being fatigue wear. With the GrF content increased, the fatigue wear resistance of the composites progressively improved.

关键词

氟化石墨 / 超高分子量聚乙烯 / 拉伸性能 / 摩擦学性能

Key words

Graphite fluoride (GrF) / Ultra-high molecular weight polyethylene (PE-UHMW) / Tensile properties / Tribological performance

中图分类号

TB332 / TQ325.12

引用本文

导出引用
杨飞 , 韦志强 , 黄国栋 , . 水润滑条件下填充氟化石墨对超高分子量聚乙烯复合材料的减摩耐磨性能研究. 塑料科技. 2024, 52(11): 19-23 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.004
YANG Fei, WEI Zhi-qiang, HUANG Guo-dong, et al. Study on Friction Reduction and Wear Resistance of Ultra High Molecular Weight Polyethylene Composites Filled with Fluorinated Graphite Under Water Lubrication Conditions[J]. Plastics Science and Technology. 2024, 52(11): 19-23 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.004

参考文献

1
KURTZS M. UHMWPE biomaterials handbook: Ultra high molecular weight polyethylene in total joint replacement and medical devices[M]. Amsterdam Boston: Academic Press, 2009.
2
MUSIB M K. A review of the history and role of UHMWPE as a component in total joint replacements[J]. International Journal of Biological Engineering, 2011, 1(1): 6-10.
3
LSHIHARA K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design[J]. Polymer Journal, 2015, 47(9): 585-597.
4
KREMERS H M, LARSON D R, CROWSON C S, et al. Prevalence of total hip and knee repacement in the United States[J]. The Journal of Bone and Joint Surgery: American volume, 2015, 97(17): 1386-1397.
5
徐一宏,徐卫东.人工髋关节假体材料及界面的选择[J].临床外科杂志,2019,27(4):271-275.
6
葛世荣,王成焘.人体生物摩擦学的研究现状与展望[J].摩擦学学报,2005,25(2):186-191.
7
范望喜,陶冶,乔雅丽,等.石墨烯复合UHMWPE纤维增强UHMWPE层压板的制备及性能[J].合成树脂及塑料,2021,38(5):17-21.
8
孟培媛,孙琳琳.超高分子量聚乙烯/石墨烯复合涂层制备及其在海洋装备防护中的应用[J].表面技术,2017,46(10):35-41.
9
王海平,叶会见,钟明强,等.UHMWPE/石墨烯纳米复合材料的制备及其结构与性能研究[C]//2015年全国高分子学术论文报告会论文摘要集——主题L高分子复合体系.苏州:中国化学会高分子学科委员会,2015.
10
李景忠,宋浩南.石墨改性超高分子量聚乙烯的性能研究[J].化学与黏合,2013,35(4):21-23, 28.
11
TAI Z X, CHEN Y F, AN Y F, et al. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets[J]. Tribology Letters, 2012, 46: 55-63.
12
卞达,汤豪,郭永信,等.不同摩擦环境下GO/UHMWPE复合材料摩擦学行为研究[J].塑料工业,2020,48(8):43-46.
13
朱杰.石墨烯填充超高分子量聚乙烯摩擦磨损性能研究[D].无锡:江南大学,2014.
14
SUN H Y, JIANG F, LEI F, et al. Graphite fluoride reinforced PA6 composites: Crystallization and mechanical properties[J]. Materials Today Communications, 2018, 16: 217-225.
15
FUSARO R L. Mechanisms of graphite fluoride [(CF x ) n ] lubrication[J]. Wear, 1979, 53(2): 303-323.
16
黄之杰,费逸伟,王鹤寿.纳米级氟化石墨作为润滑剂添加剂的摩擦学性能研究[J].润滑与密封,2006(3):114-116.
17
徐龙华.氟化石墨烯/超高分子量聚乙烯复合材料的制备和性能研究[D].兰州:兰州大学,2016.
18
关强强,强宝民,郭君斌,等.氟化石墨改性适配器PTFE层摩擦磨损性能研究[J].包装工程,2018,39(17):31-36.
19
周少锋,张瑛,刘亚青,等.氟化石墨/氟碳复合涂层耐磨防腐性能研究[J].润滑与密封,2022,47(4):66-75.
20
黄华栋,卞达,李佳源,等.氟化石墨改性UHMWPE摩擦学性能的研究[J].塑料工业,2020,48(9):41-45.
21
卢燕,马亚伟.道路排水板用超疏水性聚氯乙烯复合材料的制备及性能研究[J].塑料科技,2023,51(11):56-60.
22
American Society for Testing and Materials. Standard test method for tensile properties of plastics: ASTM D638-22 :[S]. West Conshohocken: ASTM, 2022.
23
雷然,王嘉柔,赵颂,等.超疏水、自清洁氟化石墨改性不锈钢网的油水分离研究[J].化工学报,2021,72(2):1191-1201.
24
田地.氟化石墨的研究与应用前景[J].矿产保护与利用,1995(6):23-26, 50.
25
HUANG G D, ZHANG T, CHEN Y, et al. Graphite fluoride as a novel solider lubricant additive for ultra-high-molecular-weight polyethylene composites with excellent tribological properties[J]. Lubricants, 2023, DOI: 10.3390/lubricants11090403.
26
MEYERS M A, CHAWLA K K. Mechanical behavior of materials[M]. Cambridge: Cambridge University Press, 2008.

基金

国家自然科学基金(51605193)

评论

PDF(2251 KB)

Accesses

Citation

Detail

段落导航
相关文章

/