聚酯光热转换纤维的制备及性能研究

张文宇, 朱福和, 李沐芳, 赵青华, 梅涛, 王栋, 陈佳慧

PDF(3076 KB)
PDF(3076 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (11) : 7-12. DOI: 10.15925/j.cnki.issn1005-3360.2024.11.002
理论与研究

聚酯光热转换纤维的制备及性能研究

作者信息 +

Preparation and Performance Study of Polyester Photothermal Conversion Fiber

Author information +
History +

摘要

采用熔融共混挤出技术将高效率光热转化粉末材料铯钨青铜纳米颗粒(Cs x WO3 NPs)均匀分散到聚酯切片中,制备光热转换聚酯母粒。将光热转换聚酯母粒与常规聚酯切片按一定比例进行共混,然后进行熔融和纺丝,制备得到0.5% Cs x WO3易染色的高效光热转换聚酯纤维,分析该纤维的微观形貌、热稳定性、力学性能和发热性能。结果表明:Cs x WO3 NPs的添加对纤维的热稳定性未产生明显影响,对纤维的力学性能有一定的提升;在1 kW/m2太阳光照强度照射下,光热转换聚酯纤维最高温度可达104.6 ℃,相比常规聚酯纤维提升约58.0 ℃。

Abstract

Using melt blending extrusion technology, efficient photothermal conversion powder cesium tungsten bronze nanoparticles (Cs x WO3 NPs) were uniformly dispersed into polyester chips to prepare photothermal conversion polyester masterbatch. Blend photothermic conversion polyester masterbatch with conventional polyester chips in a specific ratio, followed by melting and spinning processes. 0.5% Cs x WO3 high-efficiency photothermal conversion polyester fibers with good dye-ability were prepared. The microstructure, thermal stability, mechanical properties and heating performance of the fiber were analyzed. The results showed that the addition of Cs x WO3 NPs did not have a significant effect on the thermal stability of the fibers, but had a certain improvement in the mechanical properties of the fibers. Under the irradiation of 1 kW/m² solar light intensity, the maximum temperature of the photothermal conversion polyester fiber reached 104.6 ℃, which was about 58.0 ℃ higher than that of conventional polyester fibers.

关键词

熔融纺丝 / 铯钨青铜 / 易染色 / 聚酯 / 光热转换

Key words

Melt-spinning / Cesium tungsten bronze / Good dye-ability / Polyester / Photothermal conversion

中图分类号

TQ323.41

引用本文

导出引用
张文宇 , 朱福和 , 李沐芳 , . 聚酯光热转换纤维的制备及性能研究. 塑料科技. 2024, 52(11): 7-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.002
ZHANG Wen-yu, ZHU Fu-he, LI Mu-fang, et al. Preparation and Performance Study of Polyester Photothermal Conversion Fiber[J]. Plastics Science and Technology. 2024, 52(11): 7-12 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.11.002

参考文献

1
GUO Y B, LI K R, HOU C Y, et al. Fluoroalkylsilane-modified textile-based personal energy management device for multifunctional wearable applications[J]. ACS Applied Materials & Interfaces, 2016, 8(7): 4676-4683.
2
古田常胜,黄汉生.阳光蓄热保温纤维的开发[J].国外纺织技术,1994(1):1-6.
3
何慧,赵惠红,陶海燕.蓄热保温保健花呢的设计与生产关键技术[J].毛纺科技,2015,43(7):6-8.
4
左凯杰,陈佳,黄惠标,等.碳纳米管发热保暖复合功能面料的开发[J].针织工业,2022(3):10-12.
5
黄小蝶,崔沂,张瑞云,等.多组分发热保暖针织物的热湿舒适性评价[J].上海纺织科技,2020,48(6):55-59.
6
曹元鸣,郑蜜,李一飞,等.二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J].纺织学报,2021,42(9):46-51, 58.
7
徐双林.远红外发热抗菌保暖针织内衣面料开发[J].针织工业,2023(5):7-10.
8
KHOEI J K, BAFQI M S S, SAEIDIHARZAND S, et al. Upcycled graphene integrated fiber-based photothermal hybrid nanocomposites for solar-driven interfacial water evaporation[J]. Desalination, 2023, 562: 116707-116718.
9
HE P X, PU H H, LI X F, et al. CNTs‐coated TPU/ANF composite fiber with flexible conductive performance for joule heating, photothermal, and strain sensing[J]. Journal of Applied Polymer Science, 2023, DOI: 10.1002/app.53668.
10
陈金文,刘诗怡,吴倩怡,等.基于力敏发热的智能纺织品设计[J].纺织导报,2021(4):76-79.
11
朱国庆,卢业虎.电发热织物在柔性可穿戴领域的应用[J].现代丝绸科学与技术,2021,36(4):30-34.
12
吴裕兵,庄燕.轻量保暖吸湿发热内衣面料开发[J].纺织科技进展,2022(2):33-36.
13
杨媛媛,苏淼,鲁佳亮,等.吸湿发热机织面料的设计与性能[J].上海纺织科技,2024,52(1):41-45, 59.
14
薛庆龙,姚文丽,高姝一,等.改性聚丙烯酸类纤维吸湿发热机织物的开发[J].上海纺织科技,2022,50(2):38-42.
15
晋玉霞,白玲,李伟莉,等.碳纳米管增强聚丙烯腈光热功能纳米纤维的制备及性能表征[J].上海纺织科技,2023,51(11):74-78.
16
王彩云,卫敏,吴霞,等.光热转换面料的吸光升温性能研究[J].中国纤检,2020(9):59-62.
17
梅涛,郭启浩,吴永智,等.高效光热转化发热聚酯纤维的制备与性能研究[J].离子交换与吸附,2017,33(3):271-279.
18
董宁,刘殷,山传雷,等.吸湿发热黏胶纤维制备方法及其性能探讨[J].化纤与纺织技术,2022,51(4):23-25.
19
程明丽,沈为,俞灏,等.吸湿发热针织物的热湿性能研究[J].东华大学学报:自然科学版,2022,48(6):57-63.
20
涂林,鲍利红,修兴洪,等.光热转换聚氨酯基储能调温纤维的制备及性能[J].北京服装学院学报:自然科学版,2021,41(4):71-78.
21
李成欣,高助威,刘钟馨,等.氧化石墨烯负载无纺布复合膜的制备及光热转换性能[J].复合材料学报,2021,38(12):4255-4264.
22
JIANG Y J, LI C L, JIANG P Q, et al. Preparation and characterization of viscose composites fiber and its enhancing effect in photothermal conversion property[J]. Polymer Composites, 2020, 41: 4084-4092.
23
JIA S Y, HAN Y, LIU Z H, et al. Chitosan/graphene oxide/gelatin (CS/GA/GO) hybrid fiber with enhanced tensile strength and photothermal conversation efficiency[J]. Carbon Letters, 2023, 34: 703-713.
24
LIU X Y, DU X Y, LI L, et al. Multifunctional AgNW@MXene decorated polymeric textile for highly-efficient electro-/photothermal conversion and triboelectric nanogenerator[J]. Composites Part A: Applied Science and Manufacturing, 2022, 156: 106883-106891.
25
MEI T, ZHAO Q H, CHEN J H, et al. Nanofiber-based aerogel integrating photothermal and photocatalytic properties for efficient wastewater treatment[J]. Composites Communications, 2022, DOI: 10.1016/j.coco.2022.101348.
26
MEI T, CHEN J H, ZHAO Q H, et al. Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42686-42695.
27
TESSEMA A A, WU C M, MOTORA K G, et al. Highly-efficient and salt-resistant Cs x WO3@g-C3N4/PVDF fiber membranes for interfacial water evaporation, desalination, and sewage treatment[J]. Composites Science and Technology, 2021, 211: 108865-108874.
28
姚璐,蒋蕾,董秋霞,等.基于纳米铯钨青铜制备个人热管理智能纺织品[J].丝绸,2024,61(1):68-75.
29
LIU J Y, LIU J X, SHI F, et al. Transparent and bendable silica aerogels integrated with Cs x WO3 films for photothermal temperature self-regulating systems[J]. ACS Applied Nano Materials, 2023, 6(24): 22968-22978.

基金

福建省技术创新重点攻关及产业化项目(2023G028)
2022年度湖北省揭榜制科技项目(2022BEC049)

评论

PDF(3076 KB)

Accesses

Citation

Detail

段落导航
相关文章

/