铜纳米线/高分子导热复合材料的研究进展

刘雅轩, 侯佳乐, 李新乐, 李震奇, 马峰岭, 石姗姗, 姜涛, 吴新锋

PDF(1320 KB)
PDF(1320 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (10) : 154-160. DOI: 10.15925/j.cnki.issn1005-3360.2024.10.030
综述

铜纳米线/高分子导热复合材料的研究进展

作者信息 +

Research progress of Copper Nanowire/Macromolecule Thermal Conductivity Composites

Author information +
History +

摘要

通过构建导热网络来增加或拓宽导热通路是制备高导热复合材料的常用途径之一。一维结构的铜纳米线交错或取向处理可以连接成网络结构,大大提高复合材料的散热性能。文章介绍铜纳米线的3种制备方法:模板电沉积法、液相还原法和直接浸渍法。通过不同方法制备出垂直取向且呈现网络结构的铜纳米线热导率较高,作为导热填料可以显著提高材料的导热性能。文章介绍铜纳米线复合材料的6种制备方法:物理共混法、冷冻干燥法、磁场取向法、热压法、溶液浇铸法、真空抽滤法,介绍每种方法的原理,分析各种复合材料成型方式的导热影响因素,概述不同制备方式过程并归纳其导热性能。最后,对填充铜纳米线导热复合材料进行总结和展望。

Abstract

Increasing or broadening the thermal conductivity path by constructing a thermal conductivity network is one of the common ways to prepare high thermal conductivity composites. The interlacing or orientation of copper nanowires with one-dimensional structure can be connected into a network structure, which greatly improves the heat dissipation performance of composites. In this paper, three preparation methods of copper nanowires were introduced: Template electrodeposition method, liquid phase reduction method, and direct impregnation method. The vertically oriented and network structure copper nanowires were prepared by different methods with high thermal conductivity, which can significantly improve the thermal conductivity of the materials as thermal conductive fillers. Six preparation methods of copper nanowire composites were introduced: Physical blending method, freeze-drying method, magnetic field orientation method, hot pressing method, solution casting method, and vacuum filtration method. The principles of each method wereintroduced, the influencing factors of thermal conductivity of various composite molding methods were analyzed, the different preparation methods were summarized, and the thermal conductivity properties of different preparation methods were summarized. Finally, the thermally conductive composites filled with copper nanowires were summarized and prospected.

关键词

铜纳米线 / 热导率 / 复合材料 / 制备方法

Key words

Copper nanowires / Thermal conductivity / Composites / Preparation methods

中图分类号

TQ317.3

引用本文

导出引用
刘雅轩 , 侯佳乐 , 李新乐 , . 铜纳米线/高分子导热复合材料的研究进展. 塑料科技. 2024, 52(10): 154-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.030
LIU Ya-xuan, HOU Jia-le, LI Xin-le, et al. Research progress of Copper Nanowire/Macromolecule Thermal Conductivity Composites[J]. Plastics Science and Technology. 2024, 52(10): 154-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.030

参考文献

1
桂晓凡,石姗姗,张磊,等.冻干取向法制备高导热复合材料研究进展[J].工程塑料应用,2023,51(4):155-159.
2
YIN C G, LIU Z J, MO R, et al. Copper nanowires embedded in boron nitride nanosheet-polymer composites with enhanced thermal conductivities for thermal management[J]. Polymer, 2020, DOI: 10.1016/j.polymer.2020.122455.
3
CHEN G Q, YANG W S, DONG R H, et al. Interfacial microstructure and its effect on thermal conductivity of SiCp/Cu composites[J]. Materials and Design, 2014, 63: 109-114.
4
LI J, FENG Y H, ZHANG X X, et al. Theoretical and experimental research of thermal conductivity of silver (Ag) nanowires in mesoporous substrate[J]. International Journal of Heat and Mass Transfer, 2018, 121: 547-554.
5
LIANG Y M, ZHANG B, LIU Z C, et al. Electroless deposition surface engineering of boron nitride sheets for enhanced thermal conductivity and decreased interfacial thermal resistance of epoxy composites[J]. International Journal of Heat and Mass Transfer, 2021, DOI: 10.1016/j.ijheatmasstransfer.2021.121306.
6
YU H, LI L L, ZHANG Y J. Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications[J]. Scripta Materialia, 2012, 66(11): 931-934.
7
徐康,石姗姗,姜涛,等.碳纤维3D网络结构导热复合材料研究进展[J].工程塑料应用,2022,50(9):155-159.
8
MALEKPOUR H, CHANG K H, CHEN J C, et al. Thermal conductivity of graphene laminate[J]. Nano Letteers, 2014, 14(9): 5155-5161.
9
TIAN J, HE Z, XU T, et al. Rheological property and thermal conductivity of multi-walled carbon nano-tubes-dispersed non-Newtonian nano-fluids based on an aqueous solution of carboxymethyl cellulose[J]. Experimental Heat Transfer, 2016, 29(3): 378-391.
10
GU J W, ZHANG Q Y, DANG J, et al. Thermal conductivity epoxy resin composites filled with boron nitride[J]. Polymers for Advanced Technologies, 2012, 23(6): 1025-1028.
11
WU X F, TANG B, CHEN J, et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks[J]. Composites Science and Technology, 2021, DOI:10.1016/j.compscitech.2020.108610.
12
WU X F, SHI S S, TANG B, et al. Achieving highly thermal conductivity of polymer composites by adding hybrid silver-carbon fiber fillers[J]. Composites Communications, 2022, DOI: 10.1016/j.coco.2022.101129.
13
SAE J H, HYEOK I D, DAE P S, et al. Thermal conductivity of Al2O3/poly(vinyl butyral) composites[J]. Japanese Journal of Applied Physics, 2012, DOI: 10.1143/JJAP.51.09ML01.
14
GO S I, LI Y S, KO J W, et al. Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: The particle size effects of MgO additive[J]. Advances in Materials Science and Engineering, 2018, DOI: 10.1155/2018/4263497.
15
JIANG T, WANG Y, ZHANG S T, et al. Epoxy/copper-nickel metal foam composites with high thermal conductivity using an electroplating method[J]. Journal of Materials Science, 2022, 57(32): 15374-15384.
16
KAUSAR A. Polymeric nanocomposites reinforced with nanowires: Opening doors to future applications[J]. Journal of Plastic Film and Sheeting, 2019, 35(1): 65-98.
17
TSAI C Y, ZHANG T, ZHAO M Z, et al. Preparation of thermally conductive but electrically insulated polypropylene containing copper nanowire[J]. Polymer, 2021, DOI: 10.1016/j.polymer.2021.124317.
18
WANG S L, CHENG Y, WANG R R, et al. Highly thermal conductive copper nanowire composites with ultralow loading: Toward applications as thermal interface materials[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6481-6486.
19
CHEN K, LENG X S, ZHAO R, et al. Progress in the copper-based diamond composites for thermal conductivity applications[J]. Crystals, 2023, DOI: 10.3390/cryst13060906.
20
林晓婷,刘健,苏舟,等.纳米铜线的制备及其在柔性电子领域的应用[J].复合材料学报,2023,40(8):4327-4341.
21
PANAITESCU, ANA M, ANTOHE I L, et al. Effect of the cadmium telluride deposition method on the covering degree of electrodes based on copper nanowire arrays[J]. Applied Sciences-Basel, 2022, DOI: 10.3390/app12157808.
22
MICHAEL T B, SHILPI R P, TIMOTHY S E, et al. Thermal conduction in vertically-aligned copper nanowire arrays and composites[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19251-19259.
23
MICHAEL T B, SCOTT G I, LIAN F F, et al. Dense vertically aligned copper nanowire composites as high performance thermal interface materials[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42067-42074.
24
陈少华,孙睿,黄晓炜,等.Cu2O颗粒的液相还原法可控制备[J].微纳电子技术,2020,57(12):1023-1027.
25
ZHANG L, AN L, WANG Y H, et al. Thermal enhancement and shape stabilization of a phase-change energy-storage material via copper nanowire aerogel[J]. Chemical Engineering Journal, 2019, 373: 857-869.
26
ZHANG L Y, YIN J S, YU W, et al. Great thermal conductivity enhancement of silicone composite with ultra-long copper nanowires[J]. Nanoscale Research Letters, 2017, DOI: 10.1186/s11671-017-2237-z.
27
孟令虎,张耀远,吴芹,等.离子液体改性的金属有机框架材料催化CO2与环氧化物环加成反应研究进展[J].现代化工,2024,44(1):29-33.
28
ZHOU Y C, LIU F, CHEN C Y. Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation[J]. Advanced Composites and Hybrid Materials, 2019, 1(2): 46-50.
29
徐群娜,仇瑞杰,马建中.聚合物基MOFs复合材料的制备及应用[J].材料导报 2020,34(15):15153-15162.
30
SHI Y J, ZHAO Y S, HOU T Q, et al. Implementation of epoxy resin composites filled with copper nanowire-modified boron nitride nanosheets for electronic device packaging[J]. ACS Applied Nano Materials, 2023, 6(18): 16768-16777.
31
TSAI C Y, MULLINS M J, Chang C S, et al. Highly conductive polypropylene nanocomposites containing copper nanowire[J]. Journal of Applied Polymed Science, 2023, DOI: 10.1002/app.53615.
32
NHAT A T T, MINH C V, LEE, et al. Enhancement of thermal conductivity of poly(methylmethacrylate) composites at low loading of copper nanowires[J]. Macromolecular Research, 2019, 27(11): 1117-1123.
33
阿拉腾沙嘎,郭凯月.冷冻干燥法制备气凝胶材料研究进展[J].中国陶瓷,2022,58(6):17-25.
34
SUSHRUT B, PRAKASH C G, GEORGE P S, et al. Copper nanowire-filled soft elastomer composites for applications as thermal interface materials[J]. Advanced Materials Interfaces, 2017, DOI: 10.1002/admi.201700387.
35
YANG X T, FAN S G, LI Y, et al. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework[J]. Composites Papt A-Applied Science and Manufacturing, 2019, DOI: 10.1016/j.compositesa.2019.105670.
36
RAI A, MOORE A L. Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites[J]. Composites Science and Technology, 2017, 144: 70-78.
37
NHAT A T T, MINH C V, DAE H K, et al. Effect of aspect ratio of vertically aligned copper nanowires in the presence of cellulose nanofibers on the thermal conductivity of epoxy composites[J]. Polymers for Advanced Technologies, 2020, 31(10): 2351-2359.
38
HYEON S E, DONG W K, JANG K S, et al. Electrical and thermal properties of surface-modified copper nanowire/polystyrene nanocomposites through latex blending[J]. ACS Omega, 2023, 8(49): 46955-46966.
39
张大平,李斌,李莉娟.脉冲磁场对高磁感取向硅钢初次再结晶晶粒尺寸的影响[J].金属热处理,2017,42(3):34-37.
40
WANG Z, GAO C P, ZHANG S M, et al. Magnetic field-induced alignment of nickel-coated copper nanowires in epoxy composites for highly thermal conductivity with low filler loading[J]. Composites Science and Technology, 2022, DOI: 10.1016/j.compscitech.2021.109137.
41
WANG Y L, DUAN K Y, WANG K K, et al. Structure and thermal properties of layered Ti-clad diamond/Cu composites prepared by SPS and HP[J]. Rare Metal Materials and Engineering, 2018, 47(7): 2011-2016.
42
FAN S G, GAO C P, DUAN C J, et al. Geometry effect of copper nanoparticles and nanowires on polyetheretherketone-matrix nanocomposites: Thermal conductivity, dynamic mechanical properties and wear resistance[J]. Composites Science and Technology, 2022, DOI: 10.1016/j.compscitech.2021.109224.
43
常龙飞,杨海林,金珂.基于PEDOT:PSS电极的柔性透明IPMC材料研究[J].材料导报,2023,37(6):198-205.
44
CHEN W, WANG Z F, ZHI C Y, et al. High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite[J]. Composites Science and Technology, 2016, 130: 63-69.
45
KIHO K, KISANG A, HYUN J, et al. Improvement of insulating and thermal properties of SiO2-coated copper nanowire composites[J]. Industrial & Engineering Chemistry Research. 2016, 55(10): 2713-2720.
46
KISANG A, KIHO K, JOOHEON K. Thermal conductivity and electric properties of epoxy composites filled with TiO2-coated copper nanowire[J]. Polymer, 2015, 76: 313-320.
47
YUAN H, WANG Y, LI T, et al. Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire[J]. Composites Science and Technology, 2018, 164: 153-159.
48
LI M N, TANG C, ZHANG L, et al. A thermally conductive epoxy polymer composites with hybrid fillers of copper nanowires and reduced graphene oxide[J]. Journal of Materials Science-Materials in Electronics, 2017, 28(20):15694-15700.
49
白换换,武清,叶紫怡,等.真空抽滤制备CNF/CNT/碳纤维增强体及其复合材料界面性能研究[J].中国材料进展,2022,41(6):423-428.
50
XING Y J, CAO W, LI W, et al. Carbon nanotube/Cu nanowires/epoxy composite mats with improved thermal and electrical conductivity[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 3265-3270.

基金

国家博士后基金(2017M611757)

评论

PDF(1320 KB)

Accesses

Citation

Detail

段落导航
相关文章

/