
铜纳米线/高分子导热复合材料的研究进展
刘雅轩, 侯佳乐, 李新乐, 李震奇, 马峰岭, 石姗姗, 姜涛, 吴新锋
铜纳米线/高分子导热复合材料的研究进展
Research progress of Copper Nanowire/Macromolecule Thermal Conductivity Composites
通过构建导热网络来增加或拓宽导热通路是制备高导热复合材料的常用途径之一。一维结构的铜纳米线交错或取向处理可以连接成网络结构,大大提高复合材料的散热性能。文章介绍铜纳米线的3种制备方法:模板电沉积法、液相还原法和直接浸渍法。通过不同方法制备出垂直取向且呈现网络结构的铜纳米线热导率较高,作为导热填料可以显著提高材料的导热性能。文章介绍铜纳米线复合材料的6种制备方法:物理共混法、冷冻干燥法、磁场取向法、热压法、溶液浇铸法、真空抽滤法,介绍每种方法的原理,分析各种复合材料成型方式的导热影响因素,概述不同制备方式过程并归纳其导热性能。最后,对填充铜纳米线导热复合材料进行总结和展望。
Increasing or broadening the thermal conductivity path by constructing a thermal conductivity network is one of the common ways to prepare high thermal conductivity composites. The interlacing or orientation of copper nanowires with one-dimensional structure can be connected into a network structure, which greatly improves the heat dissipation performance of composites. In this paper, three preparation methods of copper nanowires were introduced: Template electrodeposition method, liquid phase reduction method, and direct impregnation method. The vertically oriented and network structure copper nanowires were prepared by different methods with high thermal conductivity, which can significantly improve the thermal conductivity of the materials as thermal conductive fillers. Six preparation methods of copper nanowire composites were introduced: Physical blending method, freeze-drying method, magnetic field orientation method, hot pressing method, solution casting method, and vacuum filtration method. The principles of each method wereintroduced, the influencing factors of thermal conductivity of various composite molding methods were analyzed, the different preparation methods were summarized, and the thermal conductivity properties of different preparation methods were summarized. Finally, the thermally conductive composites filled with copper nanowires were summarized and prospected.
Copper nanowires / Thermal conductivity / Composites / Preparation methods
TQ317.3
1 |
桂晓凡,石姗姗,张磊,等.冻干取向法制备高导热复合材料研究进展[J].工程塑料应用,2023,51(4):155-159.
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
徐康,石姗姗,姜涛,等.碳纤维3D网络结构导热复合材料研究进展[J].工程塑料应用,2022,50(9):155-159.
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
林晓婷,刘健,苏舟,等.纳米铜线的制备及其在柔性电子领域的应用[J].复合材料学报,2023,40(8):4327-4341.
|
21 |
PANAITESCU, ANA M,
|
22 |
|
23 |
|
24 |
陈少华,孙睿,黄晓炜,等.Cu2O颗粒的液相还原法可控制备[J].微纳电子技术,2020,57(12):1023-1027.
|
25 |
|
26 |
|
27 |
孟令虎,张耀远,吴芹,等.离子液体改性的金属有机框架材料催化CO2与环氧化物环加成反应研究进展[J].现代化工,2024,44(1):29-33.
|
28 |
|
29 |
徐群娜,仇瑞杰,马建中.聚合物基MOFs复合材料的制备及应用[J].材料导报 2020,34(15):15153-15162.
|
30 |
|
31 |
|
32 |
|
33 |
阿拉腾沙嘎,郭凯月.冷冻干燥法制备气凝胶材料研究进展[J].中国陶瓷,2022,58(6):17-25.
|
34 |
|
35 |
|
36 |
RAI A,
|
37 |
|
38 |
|
39 |
张大平,李斌,李莉娟.脉冲磁场对高磁感取向硅钢初次再结晶晶粒尺寸的影响[J].金属热处理,2017,42(3):34-37.
|
40 |
|
41 |
|
42 |
|
43 |
常龙飞,杨海林,金珂.基于PEDOT:PSS电极的柔性透明IPMC材料研究[J].材料导报,2023,37(6):198-205.
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
白换换,武清,叶紫怡,等.真空抽滤制备CNF/CNT/碳纤维增强体及其复合材料界面性能研究[J].中国材料进展,2022,41(6):423-428.
|
50 |
|
/
〈 |
|
〉 |