水环境中微纳塑料的分布特征及去除技术的研究进展

严晓红, 王丽, 石益广, 陈明月, 何伟, 梅嘉鑫, 柯国鹏, 刘敬勇

PDF(818 KB)
PDF(818 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (10) : 147-153. DOI: 10.15925/j.cnki.issn1005-3360.2024.10.029
综述

水环境中微纳塑料的分布特征及去除技术的研究进展

作者信息 +

Research Progress on Distribution Characteristics and Removal Technologies of Micro/Nano Plastics in Water Environment

Author information +
History +

摘要

微纳塑料是环境中的新兴污染物,在人类健康和生态环境等方面已经表现出严重的危害,因此探索高效分析及去除微纳塑料的策略迫在眉睫。文章总结水环境中微纳塑料污染的现状,介绍微纳塑料的来源、分布与形态,针对水环境中微纳塑料的分布特征及去除技术的研究进行概述,汇总微纳塑料在水体中的去除处理过程,对分离和降解两部分技术进行深入讨论,对新兴微纳塑料去除技术的发展进行展望,为微纳塑料污染治理提供重要参考依据。

Abstract

Micro/nano plastics are emerging pollutants in the environment and have shown serious hazards in human health and ecology, etc. It is urgent to explore strategies for efficient analysis and removal of micro/nano plastics. The current situation of micro/nano plastic pollution in water environment is summarized. The source, distribution and morphology of micro/nano plastics are introduced, the distribution characteristics of micro/nano plastics in water environment and the research of removal technology are reviewed, the removal process of micro/nano plastics in water bodies is summarized, the separation and degradation of the two parts of the technology are discussed in depth, and the development of emerging micro/nano plastics removal technology is outlooked to provide an important reference basis for the pollution control and management of micro/nano plastics.

关键词

微塑料 / 纳米塑料 / 水环境 / 去除技术

Key words

Micro plastic / Nano plastic / Water environment / Removal technique

中图分类号

X52

引用本文

导出引用
严晓红 , 王丽 , 石益广 , . 水环境中微纳塑料的分布特征及去除技术的研究进展. 塑料科技. 2024, 52(10): 147-153 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.029
YAN Xiao-hong, WANG Li, SHI Yi-guang, et al. Research Progress on Distribution Characteristics and Removal Technologies of Micro/Nano Plastics in Water Environment[J]. Plastics Science and Technology. 2024, 52(10): 147-153 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.029

参考文献

1
蔡慧文,杜方旎,张微微,等.环境微纳塑料的分析方法进展[J].环境科学研究,2021,34(11):2547-2555.
2
CHEN Z J, FANG J, WEI W, et al. Emerging adsorbents for micro/nanoplastics removal from contaminated water: Advances and perspectives[J]. Journal of Cleaner Production, 2022, DOI: 10.1016/j.jclepro.2022.133676.
3
ZHANG Y, LI Y H, SU F, et al. The life cycle of micro-nano plastics in domestic sewage[J]. Science of the Total Environment, 2022, DOI: 10.1016/j.scitotenv.2021.149658.
4
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, DOI: 10.1126/science.1094559.
5
汤庆峰,李琴梅,魏晓晓,等.环境样品中微塑料分析技术研究进展[J].分析测试学报,2019,38(8):1009-1019.
6
CLARK J R, COLE M, LINDEQUE P K, et al. Marine microplastic debris: A targeted plan for understanding and quantifying interactions with marine life[J]. Frontiers in Ecology and the Environment, 2016, 14(6): 317-324.
7
BOND T, FERRANDIZ-MAS V, FELIPE-SOTELO M, et al. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: A review[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(7-9): 685-722.
8
KALCIKOVA G, ALIC B, SKALAR T, et al. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater[J]. Chemosphere, 2017, 188: 25-31.
9
ZAMBRANO M C, PAWLAK J J, DAYSTAR J, et al. Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation[J]. Marine Pollution Bulletin, 2019, 142: 394-407.
10
HERNANDEZ E, NOWACK B, MITRANO D M. Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing[J]. Environmental Science & Technology, 2017, 51(12): 7036-7046.
11
KAY P, HISCOE R, MOBERLEY I, et al. Wastewater treatment plants as a source of microplastics in river catchments[J]. Environmental Science And Pollution Research, 2018, 25(20): 20264-20267.
12
EO S, HONG S H, SONG Y K, et al. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea[J]. Water Research, 2019, 160: 228-237.
13
LV X M, DONG Q, ZUO Z Q, et al. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies[J]. Journal of Cleaner Production, 2019, 225: 579-586.
14
JIANG C B, YIN L S, WEN X F, et al. Microplastics in sediment and surface water of West Dongting Lake and South Dongting Lake: Abundance, source and composition[J]. International Journal of Environmental Research and Public Health, 2018, DOI: 10.3390/ijerph15102164.
15
LUO W, SU L, CRAIG N J, et al. Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters[J]. Environmental Pollution, 2019, 246: 174-182.
16
BLETTLER M C M, ULLA M A, RABUFFETTI A P, et al. Plastic pollution in freshwater ecosystems: Macro-, meso-, and microplastic debris in a floodplain lake[J]. Environmental Monitoring and Assessment, 2017, DOI: 10.1007/s10661-017-6305-8.
17
ALAM F C, SEMBIRING E, MUNTALIF B S, et al. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia)[J]. Chemosphere, 2019, 224: 637-645.
18
LIU F, OLESEN K B, BORREGAARD A R, et al. Microplastics in urban and highway stormwater retention ponds[J]. Science of the Total Environment, 2019, 671: 992-1000.
19
SUN J, DAI X H, WANG Q L, et al. Microplastics in wastewater treatment plants: Detection, occurrence and removal[J]. Water Research, 2019, 152: 21-37.
20
MITRANO D M, WICK P, NOWACK B. Placing nanoplastics in the context of global plastic pollution[J]. Nature Nanotechnology, 2021, 16(5): 491-500.
21
KARIMI E M R, KIENDREBEOGO M, KHOSRAVANIPOUR MOSTAFAZADEH A, et al. Treatment processes for microplastics and nanoplastics in waters: State-of-the-art review[J]. Marine Pollution Bulletin, 2021, DOI: 10.1016/j.marpolbul.2021.112374.
22
BUSCA G, BERARDINELLI S, RESINI C, et al. Technologies for the removal of phenol from fluid streams: A short review of recent developments[J]. Journal of Hazardous Materials, 2008, 160(2/3): 265-288.
23
SAJID M, NAZAL M K, IHSANULLAH, et al. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review[J]. Separation and Purification Technology, 2018, 191: 400-423.
24
HARTMANN N B, RIST S, BODIN J, et al. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota[J]. Integrated Environmental Assessment and Management, 2017, 13(3): 488-493.
25
PADERVAND M, LICHTFOUSE E, ROBERT D, et al. Removal of microplastics from the environment. A review[J]. Environmental Chemistry Letters, 2020, 18(3): 807-828.
26
GANIE Z A, KHANDELWAL N, TIWARI E, et al. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications[J]. Journal of Hazardous Materials, 2021, DOI: 10.1016/j.jhazmat.2021.126096.
27
SHARMA S, BASU S, SHETTI N P, et al. Microplastics in the environment: Occurrence, perils, and eradication[J]. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2020.127317.
28
RAMIREZ A L, RAMSEIER G S, ZIMMERMANN S, et al. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2021.148175.
29
YUAN F, YUE L Z, ZHAO H, et al. Study on the adsorption of polystyrene microplastics by three-dimensional reduced graphene oxide[J]. Water Science And Technology, 2020, 81(10): 2163-2175.
30
YEN P L, HSU C H, HUANG M L, et al. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds[J]. Chemosphere, 2022, DOI: 10.1016/j.chemosphere.2021.131863.
31
TANG Y, ZHANG S H, SU Y L, et al. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes[J]. Chemical Engineering Journal, 2021, DOI:10.1016/j.cej.2020.126804.
32
ABDOUL MAGID A S I, ISLAM M S, CHEN Y, et al. Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2021.147115.
33
ZHU N, YAN Q, HE Y P, et al. Insights into the removal of polystyrene nanoplastics using the contaminated corncob-derived mesoporous biochar from mining area[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2022.128756.
34
WANG Z G, SUN C Z, LI F M, et al. Fatigue resistance, re-usable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal[J]. Chemical Engineering Journal, 2021, DOI:10.1016/j.cej.2021.129006.
35
AHANKARI S, PALIWAL P, SUBHEDAR A, et al. Recent developments in nanocellulose-based aerogels in thermal applications: A review[J]. American Chemical Society Nano, 2021, 15(3): 3849-3874.
36
ZHENG B Y, LI B, WAN H, et al. Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2022.128611.
37
BATOOL A, VALIYAVEETTIL S. Surface functionalized cellulose fibers—A renewable adsorbent for removal of plastic nanoparticles from water[J]. Journal of Hazardous Materials, 2021, DOI: 10.1016/j.jhazmat.2021.125301.
38
DING S Y, WANG W. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568.
39
QIAN Y T, ZHANG F F, PANG H. A review of MOFs and their composite-based photocatalysts: Synthesis and applications[J]. Advanced Functional Materials, 2021, DOI: 10.1002/adfm.202104231.
40
WAN H Y, WANG J K, SHENG X Y, et al. Removal of polystyrene microplastics from aqueous solution using the metal-organic framework material of ZIF-67[J]. Toxics, 2022, DOI:10.3390/toxics10020070.
41
ZHAO H H, WU J H, SU F M, et al. Removal of polystyrene nanoplastics from aqueous solutions by a novel magnetic zeolite adsorbent[J]. Human and Ecological Risk Assessment: An International Journal, 2022, 29(2): 327-346.
42
SHANG S C, LIU Y X, LIU M H, et al. Studying the adsorption mechanisms of nanoplastics on covalent organic frameworks via molecular dynamics simulations[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2021.126796.
43
NUELLE M T, DEKIFF J H, REMY D, et al. A new analytical approach for monitoring microplastics in marine sediments[J]. Environmental Pollution, 2014, 184: 161-169.
44
WANG Y L, LI Y N, TIAN L P, et al. The removal efficiency and mechanism of microplastic enhancement by positive modification dissolved air flotation[J]. Water Environment Research, 2021, 93(5): 693-702.
45
PRATESI C B, SANTOS ALMEIDA M AA. L., CUTRIM PAZ G S, et al. Presence and quantification of microplastic in urban tap water: A pre-screening in Brasilia, Brazil[J]. Sustainability, 2021, DOI: 10.3390/su13116404.
46
ACIÉN F G, GóMEZ-SERRANO C, MORALES-AMARAL M M, et al. Wastewater treatment using microalgae: How realistic a contribution might it be to significant urban wastewater treatment? [J]. Applied Microbiology and Biotechnology, 2016, 100(21): 9013-9022.
47
RODRíGUEZ-NARVAEZ O M, GOONETILLEKE A, PEREZ L, et al. Engineered technologies for the separation and degradation of microplastics in water: A review[J]. Chemical Engineering Journal, 2021,DOI:10.1016/j.cej.2021.128692.
48
MONTAZER Z, HABIBI NAJAFI M B, LEVIN D B. Challenges with verifying microbial degradation of polyethylene[J]. Polymers (Basel), 2020, DOI:10.3390/polym12010123.
49
YUAN J H, MA J, SUN Y R, et al. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2020.136968.
50
DOBRETSOV S, DAHMS H U, QIAN P Y. Inhibition of biofouling by marine microorganisms and their metabolites[J]. Biofouling, 2006, 22(1): 43-54.
51
KANG J, ZHOU L, DUAN X G, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings[J]. Matter, 2019, 1(3): 745-758.
52
HU K S, TIAN W J, YANG Y Y, et al. Microplastics remediation in aqueous systems: Strategies and technologies[J]. Water Research, 2021, DOI: 10.1016/j.watres.2021.117144.
53
SELLI E, BAGLIO D, MONTANARELLA L, et al. Role of humic acids in the TiO2-photocatalyzed degradation of tetrachloroethene in water[J]. Water Research, 1999, 33(8): 1827-1836.
54
ARIZA-TARAZONA M C, VILLARREAL-CHIU J F, BARBIERI V, et al. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor[J]. Ceramics International, 2019, 45(7, Part B): 9618-9624.
55
MIAO F, LIU Y F, GAO M M, et al. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode[J]. Journal of Hazardous Materials, 2020, DOI: 10.1016/j.jhazmat.2020.123023.
56
KIENDREBEOGO M, KARIMI ESTAHBANATI M R, KHOSRAVANIPOUR MOSTAFAZADEH A, et al. Treatment of microplastics in water by anodic oxidation: A case study for polystyrene[J]. Environmental Pollution, 2021, DOI: 10.1016/j.envpol.2020.116168.
57
MOHANA A A, RAHMAN M, SARKER S K, et al. Nano/microplastics: Fragmentation, interaction with co-existing pollutants and their removal from wastewater using membrane processes[J]. Chemosphere, 2022, DOI: 10.1016/j.chemosphere.2022.136682.
58
MA J, GUO X Y, YING Y P, et al. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance[J]. Chemical Engineering Journal, 2017, 313: 890-898.
59
CHEN Y J, CHEN Y F, MIAO C, et al. Metal-organic framework-based foams for efficient microplastics removal[J]. Journal of Materials Chemistry A, 2020, 8(29): 14644-14652.
60
TOFA T S, YE F, KUNJALI K L, et al. Enhanced visible light photodegradation of microplastic fragments with plasmonic platinum/zinc oxide nanorod photocatalysts[J]. Catalysts, 2019, DOI:10.3390/catal9100819.

基金

湖北省教育厅科研计划项目(B2022595)
国家自然科学基金(51978175)

评论

PDF(818 KB)

Accesses

Citation

Detail

段落导航
相关文章

/