基于SPH方法的鸟体撞击复合材料层合板数值模拟

杨铮鑫, 徐硕, 党鹏飞, 龚斌

PDF(1395 KB)
PDF(1395 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (10) : 125-129. DOI: 10.15925/j.cnki.issn1005-3360.2024.10.025
计算机辅助技术

基于SPH方法的鸟体撞击复合材料层合板数值模拟

作者信息 +

Numerical Simulation of Bird Body Impact Composite Laminate Based on SPH Method

Author information +
History +

摘要

碳纤维复合材料具有优异的力学性能,被广泛应用于航空航天等领域,但在飞行中容易受到鸟类的撞击而损坏,因此,研究鸟体撞击复合材料层合板的过程具有重大的意义。以碳纤维复合材料层合板为研究对象,基于光滑粒子流体动力学法(SPH)和Ls-Dyna prepost显示动力学对其受到鸟体撞击的过程进行分析和研究。首先,采用拉格朗日模型建立碳纤维复合材料层合板的有限元模型,采用SPH方法建立鸟体模型。其次,考虑不同速度、不同姿态角对鸟体与层合板撞击时接触力及层合板能量耗散情况的影响规律。最后,分析在不同铺层角度条件下层合板对鸟撞吸能效果的影响。结果表明:接触力峰值随着鸟体冲击速度的增加而增加。鸟体姿态角在60°时层合板吸收更多的动能。铺层角度为[0/90/0/90/0/90/0/90]的层合板抗冲击能力最好,合理设置铺层角度能够提高复合材料层合板的吸能效果。

Abstract

Carbon fiber composites have excellent mechanical properties and are widely used in aerospace and other fields, but they are easily damaged by the impact of birds in flight, so it is of great significance to study the process of bird body impact composite laminates. In this study, the process of the impact of the carbon fiber composite laminate on the bird body was analyzed and studied based on the smooth particle hydrodynamics (SPH) method and the Ls-Dyna prepost display dynamics. Firstly, the Lagrangian model was used to establish the finite element model of carbon fiber composite laminates, and the SPH method was used to establish the bird body model. Secondly, the influence of different velocities and different attitude angles on the contact force and the energy dissipation of the laminate during the collision between the bird body and the laminate were considered. Finally, the influence of laminate on the energy absorption effect of bird strikes under different ply angles was analyzed. The results show that the peak contact force increases with the increase of the impact velocity. At a bird attitude angle of 60°, the laminate absorbs more kinetic energy. The laminate with a ply angle of [0/90/0/90/0/0/90/0/90] has the best impact resistance, and a reasonable ply angle can improve the energy absorption effect of the composite laminate.

关键词

复合材料层合板 / 鸟撞 / 光滑粒子流体动力学法 / 铺层角度

Key words

Composite laminates / Bird strike / SPH / Ply angles

中图分类号

TB332 / V214.1

引用本文

导出引用
杨铮鑫 , 徐硕 , 党鹏飞 , . 基于SPH方法的鸟体撞击复合材料层合板数值模拟. 塑料科技. 2024, 52(10): 125-129 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.025
YANG Zheng-xin, XU Shuo, DANG Peng-fei, et al. Numerical Simulation of Bird Body Impact Composite Laminate Based on SPH Method[J]. Plastics Science and Technology. 2024, 52(10): 125-129 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.025

参考文献

1
黄朦,董杰,郭涛,等.聚酰亚胺纤维/碳纤维增强树脂基混杂复合材料低速冲击性能[J].纺织科学与工程学报,2022,39(3):1-6, 49.
2
童谣,剡小军,刘扬,等.层合板受鸟撞冲击过程的数值模拟[J].地震工程与工程振动,2019,39(6):27-31.
3
BOGDAN-ALEXANDRU B. Impact simulation with an aircraft wing using SPH bird model[J]. Incas Bulletin, 2015, 7(3): 51-58.
4
HEDAYATI R, JAHANBAKHSHI M. Finite element analysis of an aluminum airplane stabilizer against birdstrike[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2015, 38(2): 1-10.
5
LIU J, LI Y L, GAO X S. Bird strike on a flat plate: experiments and numer⁃ical simulations[J]. International Journal of Impact Engineering, 2014,70: 21-37.
6
DAR U A, AWAIS M, MIAN H H, et al. The effect of representative bird model and its impact direction on crashworthiness of aircraft wind⁃shield and canopy structure[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233: 5150-5163.
7
DAR U A, ZHANG W H, XU Y J. FE analysis of dynamic response of aircraft windshield against bird impact[J]. International Journal of Aerospace Engineering, 2013, DOI: 10.1155/2013/171768.
8
GRIMALDI A, SOLLO A, GUIDA M, et al. Parametric study of a SPH high velocity impact analysis—A birdstrike windshield application[J]. Composite Structures, 2013, 96: 616-630.
9
HEDAYATI R, RAD S Z. A new bird model and the effect of bird geometry in impacts from various orientations[J]. Aerospace Science and Technology, 2013, 28(1): 9-20.
10
BUDGEY R.The development of a substitute artificial bird by the international birdstrike research group for use in aircraft component testing[C]//International Bird Strike Committee. Amsterdam,2000.
11
MEGUID S A, MAO R H, NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade[J]. International Journal of Impact Engineering, 2008, 35(6): 487-498.
12
DI CAPRIO F, CRISTILLO D, SAPUTO S, et al. Crashworthiness of wing leading edges under bird impact event[J]. Composite Structures, 2019, DOI: 10.1016/j.compstruct.2019.02.069.
13
LIU L L, LUO G, CHEN W, et al. Dynamic behavior and damage mechanism of 3D braided composite fan blade under bird impact[J]. International Journal of Aerospace Engineering, 2018(2): 1-16.
14
霍雨佳.鸟撞复合材料蜂窝夹芯平板动响应分析[J].航空材料学报,2021,41(6):81-88.
15
潘雄.纤维金属层板鸟撞动响应分析及应用研究[D].南京:南京航空航天大学, 2012.
16
ABDUL K S, VIJAYA R, RANGA J G. SPH high velocity impact analysis-influence of bird shape on rigid flat plate[J]. Materials Today: Proceedings, 2017, 4(2): 2564-2572.
17
ZHANG D, FEI Q. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method[J]. Aerospace Science & Technology, 2016(54): 320-329.
18
刘军,李玉龙,刘元镛.基于SPH方法的叶片鸟撞数值模拟研究[J].振动与冲击,2008(9):90-93, 185.
19
JANG J H, AHN S H. Bird-strike damage analysis and preliminary design of composite radome structure using smoothed particle hydrodynamics[J]. Applied Composite Materials, 2019, 26(3): 763 -782.
20
龙思海,滕春明,张海东.基于abaqus的SPH算法鸟撞分析研究[J].教练机,2019(1):23-26.
21
ZHOU Y D, SUN Y C, HUANG T L, et al. SPH-FEM simulation of impacted composite laminates with different layups[J]. Aerospace Science and Technology, 2019, DOI: 10.1016/j.ast.2019.105469.
22
SHAO Q, ZHOU Y, ZHU P. Spatiotemporal analysis of environmental factors on the birdstrike risk in high plateau airport with multi-scale research[J].Sustainability, 2020, DOI: 10.3390/su12229357.
23
KOU J F, XU F F. The influence of bird's shape and attitude on bird-strike analysis of structure[C]//Proceedings of the International Conference on Computer Information Systems and Industrial Applications, 2015, DOI: 10.2991/cisia-15.2015.267.
24
HEIMBS S, BERGMANN T. High-velocity impact behaviour of prestressed composite plates under bird strike loading[J]. International Journal of Aerospace Engineering, 2012, DOI:10.1155/2012/372167.
25
ZHOU Y D, SUN Y C, HUANG T L. Bird-strike resistance of composite laminates with different materials[J]. Materials, 2019, DOI: 10.3390/ma13010129.
26
朱广荣.大型民机结构动力学建模与适航验证分析技术研究[D].南京:南京航空航天大学,2017:7-8.
27
霍雨佳.复合材料蜂窝夹芯结构鸟撞损伤研究[D].天津:中国民航大学,2019.

基金

国家自然科学基金(12002219)
辽宁省科技厅自然科学基金计划项目(2022-NLTS-18-02)
辽宁省科学技术计划项目(2022JH2/101300077)
辽宁省科学技术计划项目(2023JH2/101600062)

评论

PDF(1395 KB)

Accesses

Citation

Detail

段落导航
相关文章

/