湿热环境下不同宽径比的CFRP层合板拉伸性能预测

盖迪, 冯雪健, 张磊, 徐海, 赵铮

PDF(1763 KB)
PDF(1763 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (10) : 119-124. DOI: 10.15925/j.cnki.issn1005-3360.2024.10.024
工艺与控制

湿热环境下不同宽径比的CFRP层合板拉伸性能预测

作者信息 +

Prediction of Tensile Properties of CFRP Laminates with Different Aspect Ratios Under Hot and Humid Environments

Author information +
History +

摘要

机械连接作为目前主要的连接方式,须在连接件与被连接件表面开设孔洞,而含孔结构件的力学性能会发生一定程度的下降。为了研究不同宽径比的CFRP层合板在湿热环境下的拉伸性能,制备分别含1、2、3、4、5 mm直径的中心贯穿孔CFRP层合板,分析其在71 ℃、85%RH环境下的破坏形貌、应力-应变曲线以及强度退化情况。结果表明:室温干态(RTD)环境下的CFRP孔板在断裂时,断口平整,呈现脆性断裂的基本特征;高温湿态(ETW)环境下的CFRP孔板会出现层间分层以及纤维黏连断裂的现象,同时在拉伸过程中试样会出现延迟断裂的情况。RTD和ETW环境下试样拉伸强度均会随着孔径的增大而减小。为了对湿热环境下含孔层合板的拉伸性能进行预测,提出一种基于PSC准则的预测公式。

Abstract

Mechanical connection, as the main connection method at present, holes shall be made on the surfaces of connectors and connected parts, and the mechanical properties of the structural parts containing holes will be decreased to a certain extent. In order to study the tensile properties of carbon fiber reinforced polymer (CFRP) laminates with different width-to-diameter ratios under humid-heat environments, CFRP laminates containing center penetration holes with diameters of 1, 2, 3, 4, 5 mm, respectively, were prepared, and their damage morphology, stress-strain curves, and strength degradation were analyzed at 71 ℃ and 85% RH. The results show that the CFRP laminates in the room temperature dry (RTD) environment have a flat fracture with the basic characteristics of brittle fracture; the CFRP laminates in the elevated temperature wet (ETW) environment have the phenomena of interlayer delamination and fiber adhesion fracture, and delayed fracture occurs in the tensile process of the test pieces; the tensile strengths of the test pieces in the RTD and ETW environments decrease with the increase of the pore diameters. The tensile strength of the specimens in both RTD and ETW environments decreases with increasing pore size. In order to predict the tensile properties of porous laminates under humid and hot environments, a prediction formula based on the PSC criterion is proposed.

关键词

湿热环境 / CFRP / 拉伸性能 / 破坏形貌

Key words

Hot and humid environment / CFRP / Tensile properties / Destruction of topography

中图分类号

TQ323.4 / TB332

引用本文

导出引用
盖迪 , 冯雪健 , 张磊 , . 湿热环境下不同宽径比的CFRP层合板拉伸性能预测. 塑料科技. 2024, 52(10): 119-124 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.024
GAI Di, FENG Xue-jian, ZHANG Lei, et al. Prediction of Tensile Properties of CFRP Laminates with Different Aspect Ratios Under Hot and Humid Environments[J]. Plastics Science and Technology. 2024, 52(10): 119-124 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.024

参考文献

1
黄亿洲,王志瑾,刘格菲.碳纤维增强复合材料在航空航天领域的应用[J].西安航空学院学报,2021,39(5):44-51.
2
吴世宝,陈冠旭,马佳,等.高温环境对含孔复合材料层合板屈曲性能的影响[J].河南科学,2020,38(5):703-709.
3
姚宇超,许希武,毛春见.湿热环境下开孔复合材料层合板的强度[J].材料科学与工程学报,2015,33(3):425-431.
4
展全伟,范学领,孙秦.复合材料孔板在湿热环境下的力学性能研究[J].固体火箭技术,2011,34(6):764-767.
5
SAWAN H A, WALTER M E, MARQUETTE B. Unsupervised learning for classification of acoustic emission events from tensile and bending experiments with open-hole carbon fiber composite samples[J]. Composites Science and Technology, 2015, 107: 89-97.
6
GE J, LUO M, ZHANG D H, et al. Temperature field evolution and thermal-mechanical interaction induced damage in drilling of thermoplastic CF/PEKK—A comparative study with thermoset CF/epoxy[J]. Journal of Manufacturing Processes, 2023, 88: 167-183.
7
GE J, ZHANG W C, LUO M, et al. Multi-objective optimization of thermoplastic CF/PEKK drilling through a hybrid method: An approach towards sustainable manufacturing[J]. Composites Part A: Applied Science and Manufacturing, 2023, DOI: 10.1016/j.compositesa.2022.107418.
8
GU H. Degradation of glass fibre/polyester composites after ultraviolet radiation[J]. Materials & Design, 2008, 29(7): 1476-1479.
9
贾云龙.吸湿对单向亚麻纤维复合材料力学性能的影响[J].复合材料学报,2022,39(2):608-616.
10
杨旭东,安涛,邹田春,等.湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J].2019,47(7):84-91.
11
张武昆,闫伟,王会平,等.不同环境下宽径比对碳纤维增强环氧树脂复合材料开孔层压板压缩失效的影响[J].复合材料学报,2020,37(2):267-275.
12
GUERMAZI N, TARJEM ABEN, KSOURI I, et al. On the durability of FRP composites for aircraft structures in hygrothermal conditioning[J]. Composites Part B: Engineering, 2016, 85: 294-304.
13
NANDAGOPAL R A, NARASIMALU S, CHAI G B. Study of statistically significant strength degradation of hygrothermal aged CFRP and its weibull analysis[J]. Composites Communications, 2021, DOI: 10.1016/j.coco.2020.10.0566.
14
BOUALEM N. Accelerated aging of unidirectional hybrid composites under the long-term elevated temperature and moisture concentration[J]. Theoretical and Applied Fracture Mechanics, 2011, 55(1): 68-75.
15
LI X M, WEITSMAN Y J. Sea-water effects on foam-cored composite sandwich lay-ups[J]. Composites Part B: Engineering, 2004, 35: 451-459.
16
MARX J, RABIEI A. Tensile properties of composite metal foam and composite metal foam core sandwich panels[J]. Journal of Sandwich Structures & Materials, 2020, DOI: 10.1177/1099636220942880.
17
MOSTAFA A, SHANKAR K. Behaviour of PU-foam/glass-fibre composite sandwich panels under flexural static load[J]. Materials and Structures, 2014, 48: 1545-1559.
18
和栋庆,赵立杰,杨康,等.基于适航符合性的带孔复合材料板力学性能研究[J].沈阳航空航天学报,2023,40(2):8-14.
19
AZIZAN A, JOHAR M. An extended thickness-dependent moisture absorption model for unidirectional carbon/epoxy composites[J]. Polymers (Basel), 2021, DOI: 10.3390/polym13030440.
20
BAL S, SAHA S. Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater[J]. Journal of Polymer Engineering, 2017, 37: 633-645.
21
BEHERA A, THAWRE M M, BALLAL A. Hygrothermal aging effect on physical and mechanical properties of carbon fiber/epoxy cross-ply composite laminate[J]. Materials Today: Proceedings, 2020, 28(2): 940-943.
22
ÖZASLAN E, GÜLER M A, YETGIN A, et al. Stress analysis and strength prediction of composite laminates with two interacting holes[J]. Composite Structures, 2019, DOI:10.1016/j.compstruct.2019.04.041.
23
LIU Z, GUAN Z D, TAN R M, et al. Analysis of open-hole compressive CFRP laminates at various temperatures based on a multiscale strategy[J]. Applied Composite Materials, 2019, 26: 923-944.
24
SANG L, WANG Y Y, WANG C, et al. Moisture diffusion and damage characteristics of carbon fabric reinforced polyamide 6 laminates under hydrothermal aging[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 242-252.
25
POODTS E, MINAK G, ZUCCHELLI A. Impact of sea-water on the quasi static and fatigue flexural properties of GFRP[J]. Composite Structures, 2013, 97: 222-230.
26
FANG M, ZHANG N, HUANG M, et al. Effects of hydrothermal aging of carbon fiber reinforced polycarbonate composites on mechanical performance and sand erosion resistance[J]. Polymers, 2020, DOI:10.3390/polym12112453.
27
CAMANHO P P, ERÇIN G H, CATALANOTTI G. A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43: 1219-1225.
28
NUISMER R, WHITNEY J. Uniaxial failure of composite laminates containing stress concentrations [M]. USA: ASTM Special Technical Rublication, 1975.
29
许名瑞,曾本银,熊欣,等.湿热环境下碳纤维层合板拉伸疲劳性能[J].北京航空航天大学学报,2023,49(7):1614-1622.

评论

PDF(1763 KB)

Accesses

Citation

Detail

段落导航
相关文章

/