聚乙烯滚塑专用料耐候性能研究

秦晨元, 邸麟婷, 王文英, 魏福庆, 许惠芳, 杨世元

PDF(1236 KB)
PDF(1236 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (10) : 82-85. DOI: 10.15925/j.cnki.issn1005-3360.2024.10.016
加工与应用

聚乙烯滚塑专用料耐候性能研究

作者信息 +

Study on Weather Resistance of Polyethylene for Rotational Molding

Author information +
History +

摘要

深入研究聚乙烯滚塑专用料在不同条件下的耐候性能,全面了解其结构和性能的变化规律。使用扫描电子显微镜(SEM)、红外光谱仪(FTIR)、差示扫描量热仪(DSC)等表征手段研究不同氙灯老化程度下聚乙烯滚塑专用料的结构与性能。结果表明:随着氙灯老化时间的增加,滚塑料的表面形貌发生明显变形和裂纹,同时内部羰基特征峰的强度也呈现增大趋势。氙灯老化引起滚塑料氧化诱导期显著缩短,然而,滚塑料在熔融、结晶温度和加工性能方面表现出相对稳定的特性。此外,滚塑料的屈服应力升高,而断裂应变、断裂应力和拉伸强度则呈下降趋势。研究结果为了解聚乙烯滚塑专用料的耐候性能提供详细的实验数据,为进一步优化产品性能和应用提供参考。

Abstract

The study was to thoroughly investigate the weather resistance of polyethylene for rotational molding under different conditions, and to comprehensively understand the changing rules of their structure and performance. The structure and properties of polyethylene rotational molding special materials were investigated under different xenon lamp aging levels by using scanning electron microscopy (SEM), infrared spectroscopy (FTIR), differential scanning calorimetry(DSC), and other characterization methods. The results show that with the increase of xenon aging time, the surface morphology of the rotational plastic undergoes significant deformation and cracking, while the intensity of the internal carbonyl characteristic peaks also shows an increasing trend. The xenon lamp aging causes a significant shortening of the oxidation induction period of the rotational plastics. However, the rotational plastics show relatively stable characteristics in terms of melting and crystallization temperatures and processing properties. In addition, the yield stress of the rotational plastics increases, while the strain at fracture, stress at break and tensile strength show a decreasing trend. The experimental data in this study provide detailed information on the weather resistance of polyethylene for rotational molding, offering references for further optimizing product performance and applications.

关键词

聚乙烯 / 滚塑专用料 / 耐候性能 / 氙灯老化

Key words

Polyethylene / Rotational molding / Weather resistance / Xenon lamp aging

中图分类号

TQ325.12

引用本文

导出引用
秦晨元 , 邸麟婷 , 王文英 , . 聚乙烯滚塑专用料耐候性能研究. 塑料科技. 2024, 52(10): 82-85 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.016
QIN Chen-yuan, DI Lin-ting, WANG Wen-ying, et al. Study on Weather Resistance of Polyethylene for Rotational Molding[J]. Plastics Science and Technology. 2024, 52(10): 82-85 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.10.016

参考文献

1
陈博.国内外复合材料工艺设备发展述评之十一——滚塑成型[J].复合材料科学与工程,2023():1-9.
增刊1
2
YADAV J, RAMKUMAR P L, PARWANI A K. A comprehensive review to evaluate the consequences of material, additives, and parameterization in rotational molding[J]. Journal of Polymer Research, 2023, DOI: 10.1007/s10965-023-03591-z.
3
LI D D, GONG Y T, LI H R, et al. Improved balance between dimensional stability, mechanical properties and processability of linear low density polyethylene for rotational molding[J]. Journal of Applied Polymer Science, 2023, DOI: 10.1002/app.54066.
4
ORTEGA Z, MCCOURT M, ROMERO F, et al. Recent developments in inorganic composites in rotational molding[J]. Polymers, 2022, DOI: 10.3390/polym14235260.
5
GONZALEZNUNEZ R G L, VAZQUEZ-FLETES R C, ORTEGA-GUDINO P, et al. Rotational molding of compatibilized PA6/LLDPE blends[J]. Polymer Engineering and Science, 2021, 61(4): 1007-1017.
6
BULA K, JĘDRZEJCZAK P, AJNBACHER D, et al. Design and characterization of functional TiO2-lignin fillers used in rotational molded polyethylene containers[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.125626.
7
OGILA K, SHAO M, YANG W, et al. Rotational molding: A review of the models and materials[J]. Express Polymer Letters, 2017, 11(10): 778-798.
8
李丹,李建仁,郑德毅,等.滚塑液压油箱在工程机械上的应用研究[J].工程机械,2023,54(4):122-125, 13.
9
温原,王栓良,邹旭凯,等.滚塑级聚乙烯的耐候等级研究[J].橡塑技术与装备,2022,48(12):23-26.
10
李亚飞,孙小杰,孙苗苗,等.滚塑用耐低温冲击阻燃交联聚乙烯的研制[J].塑料科技,2021,49(2):36-39.
11
温原,郑燕峰,史春才,等.滚塑行业标准现状研究[J].中国标准化,2018(7):125-130.
12
PICK L, HANNA P R, GORMAN L. Assessment of processibility and properties of raw post-consumer waste polyethylene in the rotational moulding process[J]. Journal of Polymer Engineering, 2022, 42(4): 374-383.
13
OLIVEIRA M, PICKERING K L, GAUSS C. Hybrid polyethylene composites with recycled carbon fibres and hemp fibres produced by rotational moulding[J]. Journal of Composites Science, 2022, DOI: 10.3390/jcs6110352.
14
ABHILASH S S, LAL A R, LENIN SINGARAVELU D. A comparative study of mechanical, morphological and vibration damping characteristics of wood fiber reinforced LLDPE processed by rotational moulding[J]. Materials Today: Proceedings, 2022, 59(): 510-515.
Suppl 1
15
ANIŚKO J, BARCZEWSKI M, PIASECKI A, et al. The relationship between a rotational molding processing procedure and the structure and properties of biobased polyethylene composites filled with expanded vermiculite[J]. Materials, 2022, DOI: 10.3390/ma15175903.
16
CHANDRASEKAR A, ABDULHUSSAIN H A, GRITSICHINE V, et al. Adaptive predictive control algorithm for batch processes: Application to a rotational molding process[J]. Industrial & Engineering Chemistry Research, 2022, 61(48): 17572-17581.
17
CHEN L, SUN X, REN Y, et al. Effects of thermo-oxidative aging on structure and low temperature impact performance of rotationally molded products[J]. Polymer Degradation and Stability, 2019, 161: 150-156.
18
王跃平,刘少成,张超,等.抗氧剂对滚塑制品黄变性能影响的研究[J].齐鲁石油化工,2022,50(1):1-4, 9.
19
ABHILASH S S, SINGARAVELU D L. Effect of fiber content on mechanical and morphological properties of bamboo fiber-reinforced linear low-density polyethylene processed by rotational molding[J]. Transactions of the Indian Institute of Metals, 2020, 73(6): 1549-1554.
20
VÁZQUEZ FLETES R C, CISNEROS LÓPEZ E O, MOSCOSO SÁNCHEZ F J, et al. Morphological and mechanical properties of bilayers wood-plastic composites and foams obtained by rotational molding[J]. Polymers, 2020, DOI: 10.3390/polym12030503.
21
HEJNA A, BARCZEWSKI M, ANDRZEJEWSKI J, et al. Rotational molding of linear low-density polyethylene composites filled with wheat bran[J]. Polymers, 2020, DOI: 10.3390/polym12051004.
22
秦晨元,魏福庆,杨世元,等.聚乙烯滚塑专用料DNDC7148的性能研究[J].塑料科技,2023,51(6):41-44.
23
ZEPEDA-RODRÍGUEZ Z, ARELLANO-MARTÍNEZ M R, CRUZ-BARBA E, et al. Mechanical and thermal properties of polyethylene/carbon nanofiber composites produced by rotational molding[J]. Polymer Composites, 2020, 41(4): 1224-1233.
24
GONZÁLEZ-NÚÑEZ R, MOSCOSO-SÁNCHEZ F J, AGUILAR J, et al. Thermal analysis of foamed polyethylene rotational molding followed by internal air temperature profiles[J]. Polymer Engineering & Science, 2018, 58(): E235-E241.
Suppl 1
25
杜杰,霍金兰,张静宇,等.滚塑专用聚乙烯YC7151U的性能及改进[J].合成树脂及塑料,2021,38(3):34-37.
26
GHANEM Z, ŠOURKOVA H J, SEZEMSKY J, et al. The effect of plasma treatment of polyethylene powder and glass fibers on selected properties of their composites prepared via rotational molding[J]. Polymers, 2022, DOI: 10.3390/polym14132592.
27
ROBLEDO-ORTÍZ J R, GONZÁLEZ-LÓPEZ M E, RODRIGUE D, et al. Improving the compatibility and mechanical properties of natural fibers/green polyethylene biocomposites produced by rotational molding[J]. Journal of Polymers and the Environment, 2020, 28(3): 1040-1049.

评论

PDF(1236 KB)

Accesses

Citation

Detail

段落导航
相关文章

/