可生物降解材料对聚乳酸的增韧改性研究进展

曾永攀

PDF(3224 KB)
PDF(3224 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (09) : 153-160. DOI: 10.15925/j.cnki.issn1005-3360.2024.09.029
综述

可生物降解材料对聚乳酸的增韧改性研究进展

作者信息 +

Research Progress in Toughening Modification of Polylactic Acid by Biodegradable Materials

Author information +
History +

摘要

聚乳酸(PLA)因其可再生、可生物降解、优异的生物相容性、高刚度、高强度和良好的加工性,被视为最有前途的可持续生物基聚合物之一。然而,其固有的脆性和较差的延展性限制其更广泛的应用。研究者们通过各种材料对PLA进行增韧改性,尤其是采用可生物降解材料对PLA的增韧研究备受关注,并取得了一系列重要成果。文章介绍了PLA的合成和增韧机制,综述了采用各种可生物降解材料如聚己二酸丁二酯-对苯二甲酸丁二酯(PBAT)、聚丁二酸丁二醇酯(PBS)、聚丁二酸-己二酸丁二酯(PBSA)、聚己内酯(PCL)、聚羟基脂肪酸酯(PHA)、聚3-羟基丁酸酯(PHB)、淀粉和木质素等对PLA增韧的最新研究进展,讨论了增韧的关键因素和机理,最后对可生物降解材料增韧PLA的挑战和未来发展方向进行了展望,以期为后续可持续PLA的增韧研究提供有益的借鉴和指导。

Abstract

Poly(lactic acid) (PLA) is considered one of the most promising sustainable bio-based polymers due to its renewability, biodegradability, excellent biocompatibility, high rigidity, high strength, and good processability. However, its inherent brittleness and poor ductility limit its widespread application. Researchers have focused on toughening PLA through various materials. Specifically, the research on toughening PLA using biodegradable materials has garnered significant attention and has achieved a series of important results. The article briefly introduces the synthesis and toughening mechanisms of PLA, and then reviews the latest research progress on the toughening of PLA using various biodegradable materials such as poly(butylene adipate-co-butylene terephthalate) (PBAT), poly(butylene succinate) (PBS), poly(butylene succinate-co-butylene adipate ) (PBSA ), poly (ε-caprolactone) (PCL), polyhydroxyalkanoates (PHA), poly (3-hydroxybutyrate ) (PHB), starch and lignin, etc., discusses the key factors and related toughening mechanisms, and finally points out the challenges and future development directions of toughening PLA with biodegradable materials. The review aims to provide some useful suggestions and guidance for subsequent sustainable research on toughening of PLA.

关键词

聚乳酸 / 可生物降解材料 / 增韧 / 微观形貌 / 力学性能

Key words

Poly(lactic acid) / Biodegradable materials / Toughening / Microstructure / Mechanical properties

中图分类号

TQ323.4 / TB332

引用本文

导出引用
曾永攀. 可生物降解材料对聚乳酸的增韧改性研究进展. 塑料科技. 2024, 52(09): 153-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.029
ZENG Yong-pan. Research Progress in Toughening Modification of Polylactic Acid by Biodegradable Materials[J]. Plastics Science and Technology. 2024, 52(09): 153-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.029

参考文献

1
HAMAD K, KASEEM M, AYYOOB M, et al. Polylactic acid blends: The future of green, light and tough[J]. Progress in Polymer Science, 2018, 85: 83-127.
2
REDDY M M, VIVEKANANDHAN S, MISRA M, et al. Biobased plastics and bionanocomposites: Current status and future opportunities[J]. Progress in Polymer Science, 2013, 38(10/11): 1653-1689.
3
EICHERS M, BAJWA D, SHOJAEIARANI J, et al. Biobased plasticizer and cellulose nanocrystals improve mechanical properties of polylactic acid composites[J]. Industrial Crops and Products, 2022, DOI: 10.1016/j.indcrop.2022.114981.
4
WU Y T, GAO X, WU J, et al. Biodegradable polylactic acid and its composites: Characteristics, processing, and sustainable applications in sports[J]. Polymers, 2023, DOI: 10.3390/polym15143096.
5
AGRAWAL D, KUMAR V. Recent progress on sugarcane-bagasse based lactic acid production: Technical advancements, potential and limitations[J]. Industrial Crops and Products, 2023, DOI: 10.1016/j.indcrop.2022.116132.
6
FARAH S, ANDERSON D G, LANGER R. Physical and mechanical properties of pla, and their functions in widespread applications—A comprehensive review[J]. Advanced Drug Delivery Reviews, 2016, 107: 367-392.
7
ANDERSON K S, SCHRECK K M, HILLMYER M A. Toughening polylactide[J]. Polymer Reviews, 2008, 48(1): 85-108.
8
RAZAVI M, WANG S Q. Why is crystalline poly (lactic acid) brittle at room temperature?[J]. Macromolecules, 2019, 52(14): 5429-5441.
9
LI X R, LIN Y, LIU M L, et al. A review of research and application of polylactic acid composites[J]. Journal of Applied Polymer Science, 2023, DOI: 10.1002/app.53477.
10
LIM L T, AURAS R, RUBINO M. Processing technologies for poly (lactic acid)[J]. Progress in Polymer Science, 2008, 33(8): 820-852.
11
JIANG C, LU Y, XIE H H, et al. Flame-retardant poly (lactic acid) composites with significantly improved ductility enabled by a biobased plasticizer[J]. Industrial Crops and Products, 2024, DOI: 10.1016/j.indcrop.2024.118881.
12
XU C H, YUAN D S, FU L H, et al. Physical blend of PLA/NR with co-continuous phase structure: Preparation, rheology property, mechanical properties and morphology[J]. Polymer Testing, 2014, 37: 94-101.
13
ALIOTTA L, GIGANTE V, GEERINCK R, et al. Micromechanical analysis and fracture mechanics of poly (lactic acid)(PLA)/polycaprolactone (PCL) binary blends[J]. Polymer Testing, 2023, DOI: 10.1016/j.polymertesting.2023.107984.
14
QU G H, WEI Y F, ZHAO L F, et al. Physical modifications of cellulose nanocrystals by Poly (D-lactic acid) and poly (ethylene glycol)(PDLA-PEG-PDLA) block copolymer to improve the mechanical properties of polylactide[J]. Polymer, 2024, DOI:10.1016/j.polymer.2023.126609.
15
ZENG J B, LI K A, DU A K. Compatibilization strategies in poly (lactic acid)-based blends[J]. Rsc Advances, 2015, 5(41): 32546-32565.
16
BILLIMORIA K, HEELEY E L, PARSONS N, et al. An investigation into the crystalline morphology transitions in poly-L-lactic acid (PLLA) under uniaxial deformation in the quasi-solid-state regime[J]. European Polymer Journal, 2018, 101: 127-139.
17
KIM D Y, LEE J B, LEE D Y. Selective localization of nanofiller on mechanical properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate) nanocomposites via the surface energy and melt blending technique[J]. Macromolecules, 2022, 55(8): 3287-3300.
18
THURBER C M, XU Y, MYERS J C, et al. Accelerating reactive compatibilization of PE/PLA blends by an interfacially localized catalyst[J]. ACS Macro Letters, 2015, 4(1): 30-33.
19
RIGOUSSEN A, RAQUEZ J M, DUBOIS P, et al. A dual approach to compatibilize PLA/ABS immiscible blends with epoxidized cardanol derivatives[J]. European Polymer Journal, 2019, 114: 118-126.
20
FENG F, YE L. Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends[J]. Journal of Applied Polymer Science, 2011, 119(5): 2778-2783.
21
SANGEETHA V H, VALAPA R B, NAYAK S K, et al. Investigation on the influence of eva content on the mechanical and thermal characteristics of poly (lactic acid) blends[J]. Journal of Polymers and the Environment, 2018, 26: 1-14.
22
BITINIS N, VERDEJO R, CASSAGNAU P, et al. Structure and properties of polylactide/natural rubber blends[J]. Materials Chemistry and Physics, 2011, 129(3): 823-831.
23
YU X, WANG X, ZHANG Z, et al. High-performance fully bio-based poly (lactic acid)/polyamide11 (PLA/PA11) blends by reactive blending with multi-functionalized epoxy[J]. Polymer Testing, 2019, DOI: 10.1016/j.polymertesting.2019.105980.
24
DING Y, LU B, WANG P L, et al. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends[J]. Polymer Degradation and Stability, 2018, 147: 41-48.
25
YOKOHARA T, YAMAGUCHI M. Structure and properties for biomass-based polyester blends of PLA and PBS[J]. European Polymer Journal, 2008, 44(3): 677-685.
26
FORTELNY I, UJCIC A, FAMBRI L, et al. Phase structure, compatibility, and toughness of PLA/PCL blends: A review[J]. Frontiers in Materials, 2019, DOI: 10.3389/fmats.2019.00206.
27
MAO J C, TANG Y J, ZHAO R N, et al. Preparation of nanofibrillated cellulose and application in reinforced PLA/starch nanocomposite film[J]. Journal of Polymers and the Environment, 2019, 27: 728-738.
28
AWAL A, RANA M, SAIN M. Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites[J]. Mechanics of Materials, 2015, 80: 87-95.
29
GORDOBIL O, EGÜÉS I, LLANO-PONTE R, et al. Physicochemical properties of PLA lignin blends[J]. Polymer Degradation and Stability, 2014, 108: 330-338.
30
KULINSKI Z, PIORKOWSKA E. Crystallization, structure and properties of plasticized poly (L-lactide)[J]. Polymer, 2005, 46(23): 10290-10300.
31
NAGARAJAN V, MOHANTY A K, MISRA M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 2899-2916.
32
MERZ E H, CLAVER G C, BAER M. Studies on heterogeneous polymeric systems[J]. Journal of Polymer Science, 1956, 22(101): 325-341.
33
WU S H. Phase structure and adhesion in polymer blends: A criterion for rubber toughening[J]. Polymer, 1985, 26(12): 1855-1863.
34
PIORKOWSKA E, ARGON A S, COHEN R E. Size effect of compliant rubbery particles on craze plasticity in polystyrene[J]. Macromolecules, 1990, 23(16): 3838-3848.
35
DEBLIECK R A C, VAN BEEK D J M, REMERIE K, et al. Failure mechanisms in polyolefines: the role of crazing, shear yielding and the entanglement network[J]. Polymer, 2011, 52(14): 2979-2990.
36
WANG M, WU Y, LI Y D, et al. Progress in toughening poly (lactic acid) with renewable polymers[J]. Polymer Reviews, 2017, 57(4): 557-593.
37
GROSS R A, KALRA B. Biodegradable polymers for the environment[J]. Science, 2002, 297(5582): 803-807.
38
ZHAO X P, HU H, WANG X, et al. Super tough poly (lactic acid) blends: A comprehensive review[J]. RSC Advances, 2020, 10(22): 13316-13368.
39
WU F, MISRA M, MOHANTY A K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging[J]. Progress in Polymer Science, 2021, DOI: 10.1016/j.progpolymsci.2021.101395.
40
TÁBI T, AGEYEVA T, KOVÁCS J G. Improving the ductility and heat deflection temperature of injection molded poly (lactic acid) products: A comprehensive review[J]. Polymer Testing, 2021, DOI: 10.1016/j.polymertesting.2021.107282.
41
LI Z L, REIMER C, WANG T, et al. Thermal and mechanical properties of the biocomposites of miscanthus biocarbon and poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)(PHBV)[J]. Polymers, 2020, DOI: 10.3390/polym12061300.
42
JIAOJ, ZHENG X B, HUANG X B. An overview on synthesis, properties and applications of poly (butylene-adipate-co-terephthalate)-PBAT[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(1): 19-26.
43
PEELMAN N, RAGAERT P, RAGAERT K, et al. Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA[J]. Journal of Applied Polymer Science, 2015, DOI: 10.1002/app.42305.
44
EL-HADI A, SCHNABEL R, STRAUBE E, et al. Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends[J]. Polymer Testing, 2002, 21(6): 665-674.
45
JIANG L, WOLCOTT M P, ZHANG J. Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends[J]. Biomacromolecules, 2006, 7(1): 199-207.
46
WANG X, PENG S, CHEN H, et al. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization[J]. Composites Part B: Engineering, 2019, DOI: 10.1016/j.compositesb.2019.107028.
47
HAN Y, SHI J W, MAO L X, et al. Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21779-21790.
48
BARLETTA M, AVERSA C, AYYOOB M, et al. Poly (butylene succinate)(PBS): Materials, processing, and industrial applications[J]. Progress in Polymer Science, 2022, DOI: 10.1016/j.progpolymsci.2022.101579.
49
DENG Y, THOMAS N L. Blending poly (butylene succinate) with poly (lactic acid): Ductility and phase inversion effects[J]. European Polymer Journal, 2015, 71: 534-546.
50
HARADA M, OHYA T, IIDA K, et al. Increased impact strength of biodegradable poly (lactic acid)/poly (butylene succinate) blend composites by using isocyanate as a reactive processing agent[J]. Journal of Applied Polymer Science, 2007, 106(3): 1813-1820.
51
WANG R Y, WANG S F, ZHANG Y, et al. Toughening modification of PLLA/PBS blends via in situ compatibilization[J]. Polymer Engineering & Science, 2009, 49(1): 26-33.
52
OJIJO V, SINHA RAY S, SADIKU R. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly [(butylene succinate)-co-adipate][J]. ACS Applied Materials & Interfaces, 2012, 4(12): 6690-6701.
53
OJIJO V, SINHA RAY S, SADIKU R. Toughening of biodegradable polylactide/poly (butylene succinate-co-adipate) blends via in situ reactive compatibilization[J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4266-4276.
54
OJIJO V, RAY S S. Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization[J]. Polymer, 2015, 80: 1-17.
55
BROZ M E, VANDERHART D L, WASHBURN N R. Structure and mechanical properties of poly (D, L-lactic acid)/poly (Ε-caprolactone) blends[J]. Biomaterials, 2003, 24(23): 4181-4190.
56
OSTAFINSKA A, FORTELNY I, NEVORALOVA M, et al. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology[J]. RSC Advances, 2015, 5(120): 98971-98982.
57
BAI H W, HUANG C M, XIU H, et al. Toughening of poly (L-lactide) with poly (Ε-caprolactone): Combined effects of matrix crystallization and impact modifier particle size[J]. Polymer, 2013, 54(19): 5257-5266.
58
HARADA M, IIDA K, OKAMOTO K, et al. Reactive compatibilization of biodegradable poly (lactic acid)/poly (ε-caprolactone) blends with reactive processing agents[J]. Polymer Engineering & Science, 2008, 48(7): 1359-1368.
59
CHEN H, YU X L, ZHOU W Y, et al. Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends[J]. Polymer Testing, 2018, 70: 275-280.
60
LAI S M, LIU Y H, HUANG C T, et al. Miscibility and toughness improvement of poly (lactic acid)/poly (3-hydroxybutyrate) blends using a melt-induced degradation approach[J]. Journal of Polymer Research, 2017, 24: 1-12.
61
BIAN Y J, HAN C Y, HAN L J, et al. Toughening mechanism behind intriguing stress-strain curves in tensile tests of highly enhanced compatibilization of biodegradable poly (lactic acid)/poly (3-hydroxybutyrate-co-4-hydroxybutyrate) blends[J]. RSC Advances, 2014, 4(79): 41722-41733.
62
ZHANG S, FENG X L, ZHU S, et al. Novel toughening mechanism for polylactic acid (PLA)/starch blends with layer-like microstructure via pressure-induced flow (PIF) processing[J]. Materials Letters, 2013, 98: 238-241.
63
FERRI J M, GARCIA‐GARCIA D, CARBONELL-VERDU A, et al. Poly (lactic acid) formulations with improved toughness by physical blending with thermoplastic starch[J]. Journal of Applied Polymer Science, 2018, DOI: 10.1002/APP.45751.
64
MUIRURI J K, LIU S, TEO W S, et al. Highly biodegradable and tough polylactic acid–Cellulose nanocrystal composite[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3929-3937.
65
BULOTA M, KREITSMANN K, HUGHES M, et al. Acetylated microfibrillated cellulose as a toughening agent in poly (lactic acid)[J]. Journal of Applied Polymer Science, 2012, 126(): E449-E458.
Suppl 1
66
GORDOBIL O, DELUCIS R, EGÜÉS I, et al. Kraft lignin as filler in pla to improve ductility and thermal properties[J]. Industrial Crops and Products, 2015, 72: 46-53.
67
WANG Y C, LIU S S, WANG Q, et al. Strong, ductile and biodegradable polylactic acid/lignin-containing cellulose nanofibril composites with improved thermal and barrier properties[J]. Industrial Crops and Products, 2021, DOI: 10.1016/j.indcrop.2021.113898.

评论

PDF(3224 KB)

Accesses

Citation

Detail

段落导航
相关文章

/