复合材料高压气瓶设计、监测及失效模式的研究进展

祁一信

PDF(705 KB)
PDF(705 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (09) : 144-147. DOI: 10.15925/j.cnki.issn1005-3360.2024.09.027
综述

复合材料高压气瓶设计、监测及失效模式的研究进展

作者信息 +

Research Progress on Design, Monitoring and Failure Modes of Composite High-Pressure Gas Cylinders

Author information +
History +

摘要

复合材料高压气瓶具有轻质高强、可设计性好、耐腐蚀、承压能力好等特点,广泛应用于航天、航海、汽车制造等行业。文章对国内外复合材料高压气瓶的设计优化、在线监测和失效模式的研究进展进行了综述,设计优化主要基于网格化理论和有限元分析,在线监测主要有声发射、超声导波、电磁超声等方法,失效模式主要是爆破失效和疲劳失效。航天、航海、汽车等领域的持续发展和高需求将促进复合材料高压气瓶的分析计算、设计优化、损伤破坏等方面的研究和创新持续发展。

Abstract

Composite high-pressure gas cylinders have the characteristics of lightweight and high strength, designability, corrosion resistance, pressure bearing capacity. Therefore, they are broadly used in automobile, navigation and aerospace industries. In this paper, the research progress of design optimization, on-line monitoring and failure modes of composite high-pressure gas cylinders were discussed. The design optimization was mainly based on grid theory and finite element analysis, the on-line monitoring was mainly based on acoustic emission, ultrasonic guided wave and electromagnetic ultrasonic, and the failure modes were mainly blasting failure and fatigue failure. The continuous development and high demand in aerospace, navigation and automotive fields will promote the continuous development and innovation of the composite high-pressure gas cylinders, especially in the analysis and calculation, design optimization, damage and destruction.

关键词

复合材料高压气瓶 / 设计优化 / 在线监测 / 失效模式

Key words

Composite high-pressure gas cylinder / optimization design / on-line monitoring / failure mode

中图分类号

TB33 / TQ051.3

引用本文

导出引用
祁一信. 复合材料高压气瓶设计、监测及失效模式的研究进展. 塑料科技. 2024, 52(09): 144-147 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.027
QI Yi-xin. Research Progress on Design, Monitoring and Failure Modes of Composite High-Pressure Gas Cylinders[J]. Plastics Science and Technology. 2024, 52(09): 144-147 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.027

参考文献

1
顾森东,石晓强,徐涛.超薄钛内衬复合材料高压气瓶力学特性分析[J].上海航天,2020,37(4):74-78.
2
吕洪,黄港淇,沈亚皓,等.燃料电池汽车车载高压Ⅳ型储氢瓶耐火烧性能仿真[J].中南大学学报,2022,53(12):4637-4647.
3
刘培启,杨帆,黄强华,等.T700碳纤维增强树脂复合材料气瓶封头非测地线缠绕强度[J].复合材料学报,2019,36(12):2772-2778.
4
YANG B, XIANG Y, XUAN F Z, et al. Damage localization in hydrogen storage vessel by guided waves based on a real-time monitoring system[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22740-22751.
5
王婉君,张鹏,贺政豪,等.碳纤维复合材料压力容器的研究进展[J].现代化工, 2020,40(1):68-71.
6
杨文刚,李文斌,林松,等.碳纤维缠绕复合材料储氢气瓶的研制与应用进展[J].玻璃钢/复合材料,2015(12):99-104.
7
惠虎,柏慧,黄淞,等.纤维缠绕复合材料压力容器的研究现状[J].压力容器,2021,38(4):53-63.
8
刘哲军,葛丽,王俊峰,等.复合材料气瓶声发射检测初步研究[J].宇航材料工艺,2011,41(2):120-123.
9
李长鹏,谢淮北,刘力红.纤维缠绕超高压容器承载特性研究[J].兵器材料科学与工程,2019,42(2):25-30.
10
BOUVIER B, GUIHENEUF V, JEAN-MARIE A. Modeling and simulation of a composite high-pressure vessel made of sustainable and renewable alternative fibers[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11970-11978.
11
ZU L, XU C, ZHANG Q, et al. Design of filament-wound spherical pressure vessels based on non-geodesic trajectories[J]. Composite Structures, 2019, 218: 71-78.
12
ZU L, XU C, WANG H B, atel. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding[J]. Composite Structures, 2019, 207: 41-52.
13
SAETER E, LASN K, NONY Y, atel. Embedded optical fibres for monito­ring pressurization and impact of filament wound cylinders[J]. Composite Structures, 2019, 210: 608-617.
14
骆辉,李桐,黄强华,等.基于声发射技术的大容积玻璃纤维缠绕气瓶冲击损伤评定[J].振动与冲击,2023,42(5):143-149.
15
RAFIEE R, TORABI M. Stochastic prediction of burst pressure in composite pressure vessels[J]. Composite Structures, 2018, 185: 573-583.
16
ZU L, ZHU W D, DONG H Y, et al. Application of variable slippage coefficients to the design of filament wound toroidal pressure vessels[J]. Composite Structures, 2017, 172: 339-344.
17
LIAO B B, JIA L Y. Finite element analysis of dynamic responses of composite pressure vessels under low velocity impact by using a three-dimensional laminated media model[J]. Thin-Walled Structures, 2018, 129: 488-501.
18
FOWLER C, ORIFICI A, WANG C. A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage[J]. International Journal of Hydrogen Energy, 2016, 41: 22067-22089.
19
LIAO B B, WANG D L, HAMDI M, et al. Acoustic emission-based damage characterization of 70 MPa type Ⅳ hydrogen composite pressure vessels during hydraulic tests[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22494-22506.
20
于斌,刘志栋,靳庆臣,等.一种卫星推进分系统复合材料氦气瓶的结构设计方法[J].推进技术,2013,34(5):680-685.
21
WANG D L, LIAO B B, HAO C Y, et al. Acoustic emission characteristics of used 70 MPa type Ⅳ hydrogen storage tanks during hydrostatic burst test[J]. International Journal of Hydrogen Energy, 2021, 46: 22605-22614.
22
刘哲军,葛丽,王俊峰,等.复合材料气瓶声发射检测初步研究[J].宇航材料工艺,2011,41(2):120-123.
23
孙贺,李伟,张璐莹,等.基于模态声发射的碳纤维复合材料损伤研究[J].中国测试,2021,47(5):16-23.
24
吴锐,石文泽,卢超,等.航空不锈钢薄板电磁超声SH导波检测定量分析方法[J].航空学报,2022,43(9):735-748.
25
FOWLER C, ORIFICI A, WANG C. A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage[J]. International Journal of Hydrogen Energy, 2016, 41: 22067-22089.
26
MOUSTABCHIR H, AZARI Z, HARIRI S, et a1. Experimental and numerical study of stress-strain state of pressurised cylindrical shells with external defects[J].Engineering Failure Analysis, 2010, 17(2): 506-514.
27
LIU R, ZHANG T, WU X J, et al. Effect of crack closure in a specially orthotropic cylindrical shell containing an axial or a circumferential crack[J]. Engineerign Fracture Mechanics, 2004, 71(16/17): 2493-2512.
28
罗冬梅,余东,感本广文.宏微观渐进展开损伤本构模型及其在碳纤维增强复合材料中的应用[J].应用力学学报,2011,28(1):7-12.
29
胡照会,王荣国,马李,等.CFRP压力容器固化成型过程中边界条件的确定[J].纤维复合材料,2007,24(1):26-28.
30
张天平,刘志栋,杨福全,等.一种卫星推进系统复合材料氦气瓶设计及验证[J].上海航天,2006(3):41-47.
31
李玉峰,李玲丽,潘宗友.一种卫星用钛内衬-碳纤维缠绕复合材料气瓶特性研究[J].宇航学报,2014,35(11):1318-1325.
32
王晓蕾,沈峰,童喆益,等.空间推进系统用铝内衬PBO纤维缠绕高压气瓶的研制[J].宇航材料工艺,2013(4):63-66.
33
王晓洁,梁国正,李辅安,等.T-1000碳纤维/环氧树脂基复合材料性能研究[J].材料科学与工艺,2005(5):540-543.
34
张天平,杨福全,王小永,等.钛内衬碳纤维缠绕氦气瓶的疲劳寿命和可靠度验证[J].中国空间科学技术,2007,27(1):41-46.
35
张天平.空间应用复合材料压力容器研制技术[J].上海航天,2002(1):54-58.
36
秦拴狮.舰船金属基复合材料发展现状及对策研究[J].材料导报,2003(10):68-71.
37
章向明,王安稳,杨德林.船用复合材料与钢质高压气瓶比较设计[J].海军工程大学学报,2023(2):40-44.
38
巩克壮.船用新型复合高压气瓶设计与试验研究[J].玻璃钢/复合材料,2016(1):62-66.
39
肖杰立,饶聪,沈伟,等.铝内胆碳纤维全缠绕气瓶铺层设计[J].材料科学与工艺,2021,29(5):32-38.
40
苏红艳,何春辉,金碧辉,等.70 MPa车载Ⅳ型储氢气瓶关键技术及标准化研究[J].中国特种设备安全,2023,39(5):1-8.
41
鄢家乐,陈学东,范志超,等.70 MPa车载Ⅳ型储氢气瓶铺层设计与实验验证[J]. 西安交通大学学报,2022,56(10):71-80.
42
杨冬林,吕洪,张存满.复合材料储氢瓶的有限元参数化设计研究[J].佳木斯大学学报:自然科学版,2019,37(2):240-239.
43
左惟炜.三维编织复合材料高压储气瓶的屈曲分析与优化设计[J].中国机械工程,2007(3):286-291.
44
孟凌霄,石文泽,卢超,等.碳纤维增强树脂基复合材料气瓶电磁超声在线监测方法及失效机制[J].复合材料学报,2023,41(4):1820-1829.
45
程伟,王哲,程经纬,等.碳纤维复合材料气瓶声发射监测试验研究[J].压力容器,2023,39(3):71-80.
46
杨斌,胡超杰,轩福贞,等.基于超声导波的压力容器健康监测Ⅰ:波传导行为及损伤定位[J].机械工程学报,2020(4):1-10.
47
杨斌,胡超杰,轩福贞,等.基于超声导波的压力容器健康监测Ⅱ:定位精度的影响因素[J].机械工程学报,2020(8):133-140.
48
杨斌,胡超杰,轩福贞,等.基于超声导波的压力容器健康监测Ⅲ:纤维缠绕压力容器的在线监测[J].机械工程学报,2020(10):19-26.
49
李玉峰,靳庆臣,刘志栋,等.卫星推进系统复合材料高压气瓶爆破失效分析[J].计算机辅助工程,2013,22(4):40-45.
50
王祥龙,朱小兰,程彬,等.复合材料缠绕气瓶可靠性验证技术[J].航天制造技术, 2015(2):46-47.

基金

山西省自然科学基金青年基金项目(202203021212144)

评论

PDF(705 KB)

Accesses

Citation

Detail

段落导航
相关文章

/