高强度PMMA复合塑料混凝土材料的制备及其力学性能的研究

许明明, 刘邦

PDF(1238 KB)
PDF(1238 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (09) : 116-120. DOI: 10.15925/j.cnki.issn1005-3360.2024.09.022
加工与应用

高强度PMMA复合塑料混凝土材料的制备及其力学性能的研究

作者信息 +

Study on Preparation and Mechanical Properties of High Strength PMMA Composite Plastic Concrete Materials

Author information +
History +

摘要

研究在混凝土材料中加入聚甲基丙烯酸甲酯(PMMA),制备了高强度PMMA复合塑料混凝土材料,并探究不同PMMA掺杂量对复合塑料混凝土材料力学性能的影响。结果表明:在材料的力学性能方面,抗压强度、抗折强度、抗拉强度、弹性模量和劈裂抗拉强度均随着PMMA掺杂量的增加呈现先上升后下降的趋势,并在PMMA掺杂量为6%时达到最大值,同时各项性能也达到最优。复合混凝土材料在冻融前后以及高温的条件下也能够保持其优异的抗压强度和抗折强度,说明制备的复合混凝土材料具有良好的应用前景。

Abstract

In this study, high strength poly(methyl methacrylate) (PMMA) composite plastic concrete materials were prepared by adding PMMA to concrete materials, and the effects of different PMMA doping concentrations on the mechanical properties of composite plastic concrete materials were investigated. The results show that the compressive strength, flexural strength, tensile strength, elastic modulus and splitting tensile strength of the material firstly increase and then decrease with the increase of PMMA doping concentration. The maximum value is reached when the PMMA doping concentration is 6%, and the properties are also optimized. The composite concrete material can maintain its excellent compressive strength and flexural strength before and after freezing and thawing and under high temperature conditions, indicating that the composite concrete material prepared in this study has a good application prospect.

关键词

甲基丙烯酸甲酯 / 复合混凝土材料 / 力学性能

Key words

Methyl methacrylate / Composite concrete material / Mechanical property

中图分类号

TB332 / TU528

引用本文

导出引用
许明明 , 刘邦. 高强度PMMA复合塑料混凝土材料的制备及其力学性能的研究. 塑料科技. 2024, 52(09): 116-120 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.022
XU Ming-ming, LIU Bang. Study on Preparation and Mechanical Properties of High Strength PMMA Composite Plastic Concrete Materials[J]. Plastics Science and Technology. 2024, 52(09): 116-120 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.022

参考文献

1
张建鹏.再生混凝土力学性能及耐久性试验研究[J].施工技术:中英文,2024,53(14):125-130.
2
ZHAN P M, XU J, WANG J, et al. A review of recycled aggregate concrete modified by nanosilica and graphene oxide: Materials, performances and mechanism[J]. Journal of Cleaner Production, 2022, DOI: 10.1016/j.jclepro.2022.134116.
3
LI Y, ZHANG X, WANG R J, et al. Performance enhancement of rubberised concrete via surface modification of rubber: A review[J]. Construction and Building Materials, 2019, DOI: 10.1016/j.conbuildmat.2019.116691.
4
KHASANOV B, VATIN N, ISMAILOVA Z, et al. Physical modification of concrete mix and concrete[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, DOI: 10.1088/1757-899X/883/1/012205.
5
QIU J S, ZHU M Y, ZHOU Y X, et al. Effect and mechanism of coal gangue concrete modification by fly ash[J]. Construction and Building Materials, 2021, DOI: 10.1016/j.conbuildmat.2021.123563.
6
NIEWIADOMSKI P, HOŁA J, ĆWIRZEŃ A. Study on properties of self-compacting concrete modified with nanoparticles[J]. Archives of Civil and Mechanical Engineering, 2018, 18: 877-886.
7
姜佩弦,刘荣桂,张灵灵.基于纳米二氧化硅改性下SAP内养护混凝土的基本性能研究[J].水泥工程,2024(1):69-78.
8
许圣泽.聚丙烯纤维改性多孔生态混凝土的制备及性能研究[J].功能材料,2024,55(2):2009-2014, 2021.
9
陈宇婷,杨周,李静,等.PMMA聚合物复合混凝土的制备及机理研究[J].混凝土与水泥制品,2021(1):21-25.
10
ŠUŠTERŠIČ E, TUŠAR M, ZUPANČIČ VALANT A. Asphalt concrete modification with waste PMMA/ATH[J]. Materials and Structures, 2014, 47: 1817-1824.
11
WANG J L, DONG S F, PANG S D, et al. Pore structure characteristics of concrete composites with surface-modified carbon nanotubes[J]. Cement and Concrete Composites, 2022, DOI: 10.1016/j.cemconcomp.2022.104453.
12
GUO Y C, WU S L, LYU Z H, et al. Pore structure characteristics and performance of construction waste composite powder-modified concrete[J]. Construction and Building Materials, 2021, DOI: 10.1016/j.conbuildmat.2020.121262.
13
SCHULDYAKOV K V, KRAMAR L Y, TROFIMOV B Y. Interconnection between concrete structure and properties and various modifications[J]. Procedia Engineering, 2017, 206: 863-868.
14
SIVAKUMAR M V N. Effect of polymer modification on mechanical and structural properties of concrete—An experimental investigation[J]. International Journal of Civil & Structural Engineering, 2011, 1(4): 732-740.
15
BHURKE A S, SHIN E E, DRZAL L T. Fracture morphology and fracture toughness measurement of polymer-modified asphalt concrete[J]. Transportation Research Record, 1997, 1590(1): 23-33.
16
YANG X J, LIU J S, LI H X, et al. Performance and ITZ of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder[J]. Construction and Building Materials, 2020, DOI: 10.1016/j.conbuildmat.2019.117532.
17
ZHENG H P, PANG B, JIN Z Q, et al. Mechanical properties and microstructure of waterborne polyurethane-modified cement composites as concrete repair mortar[J]. Journal of Building Engineering, 2024, DOI: 10.1016/j.jobe.2023.108394.
18
AHMED H U, MOHAMMED A S, FARAJ R H, et al. Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations[J]. Case Studies in Construction Materials, 2022, DOI: 10.1016/j.cscm.2022.e01036.
19
LY H B, NGUYEN T A, TRAN V Q. Development of deep neural network model to predict the compressive strength of rubber concrete[J]. Construction and Building Materials, 2021, DOI: 10.1016/j.conbuildmat.2021.124081.
20
LI C Z. Mechanical and transport properties of recycled aggregate concrete modified with limestone powder[J]. Composites Part B: Engineering, 2020, DOI: 10.1016/j.compositesb.2020.108189.
21
张立明,杨宝清.聚合物混凝土概述[J].安徽建筑,2013,20(1):171.
22
潘慧敏.玄武岩纤维混凝土力学性能的试验研究[J].硅酸盐通报,2009,28(5):955-958.
23
SUARIS W, SHAH S P. Properties of concrete subjected to impact[J]. Journal of Structural Engineering, 1983, 109(7): 1727-1741.
24
施士升.冻融循环对混凝土力学性能的影响[J].土木工程学报,1997,30(4):35-42.
25
邹超英,赵娟,梁锋,等.冻融作用后混凝土力学性能的衰减规律[J].建筑结构学报,2008(1): 117-123, 138.
26
WANG R, HU Z, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment[J]. Construction and Building Materials, 2022, DOI: 10.1016/j.conbuildmat.2022.126371.
27
LUO S, BAI T W, GUO M Q, et al. Impact of freeze—Thaw cycles on the long-term performance of concrete pavement and related improvement measures: A review[J]. Materials, 2022, DOI: 10.3390/ma15134568.
28
MA Z M, ZHU F Z, ZHAO T J. Effects of surface modification of silane coupling agent on the properties of concrete with freeze-thaw damage[J]. KSCE Journal of Civil Engineering, 2018, 22: 657-669.
29
吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究[J].土木工程学报,2000,33(2): 8-12.
30
余志武,丁发兴,罗建平.高温后不同类型混凝土力学性能试验研究[J].安全与环境学报, 2005,5(5):1-6.
31
BASTAMI M, BAGHBADRANI M, ASLANI F. Performance of nano-silica modified high strength concrete at elevated temperatures[J]. Construction and Building Materials, 2014, 68: 402-408.
32
ZHOU J W, LU D, YANG Y X, et al. Physical and mechanical properties of high-strength concrete modified with supplementary cementitious materials after exposure to elevated temperature up to 1 000 ℃[J]. Materials, 2020, DOI: 10.3390/ma13030532.

评论

PDF(1238 KB)

Accesses

Citation

Detail

段落导航
相关文章

/