大分子受阻酚功能化碳纳米管改性聚氨酯网状泡沫塑料的制备及性能研究

王瑞欣, 杨瑞宁, 尚磊, 张博

PDF(2460 KB)
PDF(2460 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (09) : 32-37. DOI: 10.15925/j.cnki.issn1005-3360.2024.09.006
理论与研究

大分子受阻酚功能化碳纳米管改性聚氨酯网状泡沫塑料的制备及性能研究

作者信息 +

Preparation and Property study of Polyurethane Reticulated Foam Modified by Macromolecular Hindered Phenol Functionalized Carbon Nanotubes

Author information +
History +

摘要

以γ-氨丙基三甲氧基硅烷(APTMS)修饰的碳纳米管(CNTs)为载体,通过表面引发氧化-还原聚合接枝聚甲基丙烯酸羟乙酯(CNTs-PHEMA),再经酯化反应接枝3,5-二叔丁基-4-羟基苯甲酸(CNTs-PHEMA-g-AO-e),最后以此改性聚氨酯(PU)网状泡沫塑料详细研究了CNTs-PHEMA-g-AO-e对PU网状泡沫塑料表观密度、力学、抗静电和耐老化性能的影响。结果表明:通过表面引发氧化-还原聚合和酯化反应成功制得AO-e接枝率为8%的功能化CNTs,随CNTs-PHEMA-g-AO-e质量分数的增大,网化前后表观密度逐渐增大,密度差先减小后增大,拉伸强度和压缩强度均先增大后减小,压缩永久变形先减小后增大,断裂伸长率明显下降。当CNTs-PHEMA-g-AO-e质量分数为4%时,PU网状泡沫塑料的拉伸强度为262.6 kPa,断裂伸长率为122.7%,定变形65%的压缩强度为8.6 kPa,压缩永久变形为15.6%。与直接添加AO-e的PU网络泡沫塑料相比,CNTs-PHEMA-g-AO-e提升了材料的抗静电性能,体积电阻率下降了10个数量级,同时耐老化性能得到显著增强。

Abstract

Poly(2-hydroxyethyl methacrylate) (PHEMA) was grafted onto γ-aminopropyl trimethoxysilane (APTMS) functionalized carbon nanotubes (CNTs) by surface-initiated oxidation-reduction polymerization. Then 3,5-di-tert-butyl-4-hydroxybenzoic acid (CNTs-PHEMA-g-AO-e) was grafted by esterification. The effects of CNTs-PHEMA-g-AO-e on the apparent density, mechanical properties, antistatic and aging resistance of polyurethane (PU) reticulated foam were studied in detail. The results showed that functionalized CNTs with grafting rate of AO-e of 8% were successfully prepared by surface-initiated oxidation-reduction polymerization and esterification. With the increase of CNTs-PHEMA-g-AO-e content, the apparent density was gradually increased before and after netting, the density difference was decreased first and then increased, the tensile strength and compressive strength was first increased and then decreased, the compression set was first decreased and then increased, and the elongation at break decreased obviously. When the content of CNTs-PHEMA-g-AO-e was 4%, the tensile strength of PU reticulated foam was 262.6 kPa, the elongation at break was 122.7%, the compressive strength at 65% set deformation was 8.6 kPa and the compression set was 15.6%. Compared with PU network foam directly added with AO-e, the antistatic property was improved, the volume resistivity was decreased by 10 orders of magnitude, and the aging resistance was significantly enhanced in the presence of CNTs-PHEMA-g-AO-e.

关键词

碳纳米管 / 聚氨酯网状泡沫 / 大分子抗氧剂 / 抗静电性能 / 耐老化性能

Key words

Carbon nanotube / Polyurethane reticulated foam / Macromolecular antioxidant / Antistatic performance / Aging resistance

中图分类号

TQ328.3

引用本文

导出引用
王瑞欣 , 杨瑞宁 , 尚磊 , . 大分子受阻酚功能化碳纳米管改性聚氨酯网状泡沫塑料的制备及性能研究. 塑料科技. 2024, 52(09): 32-37 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.006
WANG Rui-xin, YANG Rui-ning, SHANG Lei, et al. Preparation and Property study of Polyurethane Reticulated Foam Modified by Macromolecular Hindered Phenol Functionalized Carbon Nanotubes[J]. Plastics Science and Technology. 2024, 52(09): 32-37 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.09.006

参考文献

1
朱日兴,吴国洪.运输类飞机燃油箱防爆适航审定技术分析[J].民航学报,2022,6(3):85-87, 74.
2
许睿轩,张旭,赵俊青,等.民用飞机燃油易燃性及其防爆技术研究进展[J].科技视界,2017(5):77.
3
杨真理,鲁长波,周友杰,等.阻隔防爆材料应用与研究进展[J].安全与环境工程,2016,23(2):130-134, 142.
4
ZHOU Y J, LU C B, XIONG C H, et al. Study on properties of spherical non-metallic explosion suppression materials[J]. Materials Science Forum, 2017, 889: 25-29.
5
吴洁,鞠伟轶,张鑫,等.新型聚丙烯阻隔防爆材料与M45甲醇汽油相容性影响[J].常州大学学报:自然科学版,2022,34(2):87-92.
6
王希,董全霄,程冠之,等.阻尼聚氨酯材料改性进展[J].塑料,2022,51(4):125-130.
7
马萍萍.聚氨酯材料的应用研究进展[J].化工设计通讯,2021,47(1):36-37.
8
叶丞.一步法制备网状聚氨酯软泡及性能研究[J].聚氨酯工业,2017,32(1):33-36.
9
孙俊杰,杨素洁,黄新杰,等.阻燃硬质聚氨酯泡沫的进展[J].塑料,2023,52(5):109-117.
10
辛成,陆少锋,申天伟,等.界面聚合网状壳体聚氨酯相变微胶囊的制备与性能[J].精细化工,2018,35(7):1121-1125.
11
杨智慧,崔香.环境友好型耐水解水性聚氨酯的制备与表征[J].塑料工业,2022,50(6):125-130, 169.
12
张峰,吴斌.可控降解聚氨酯弹性体的合成和水解性能研究[J].聚氨酯工业,2022,37(2):27-30.
13
刘兆阳,房玉俊,韩胜奎,等.持久抗静电聚氨酯弹性体的制备及性能研究[J].化学推进剂与高分子材料,2023,21(1):54-57.
14
黄文斌,孙炎,吴明明,等.聚氨酯高温老化性能研究及寿命评估[J].聚氨酯工业,2022,37(5):43-46.
15
崔永红,马睿,赵天波,等.改性端羟基聚丁二烯-三异氰酸酯基网状聚氨酯合成及性能[J].工程塑料应用,2021,49(5):1-7.
16
刘庆坤,丛川波,孟晓宇,等.反应型大分子抗氧剂的合成及其在EPDM中的抗氧化性能[J].中国塑料,2023,37(1):99-105.
17
李晨阳,公维光,孟鑫,等.抗氧剂耐迁移化技术的研究应用进展[J].中国塑料,2020,34(12):92-102.
18
冯建湘,吴任钊,何雨霖,等.新型抗氧剂研究进展[J].包装学报,2021,13(3):71-82.
19
NAVIDFAR A, SANCAK A, YILDIRIM K B, et al. A study on polyurethane hybrid nanocomposite foams reinforced with multiwalled carbon nanotubes and silica nanoparticles[J]. Polymer-Plastics Technology and Engineering, 2017, 57 (14): 1463-1473.
20
沈羽,王西建,周永情.纳米二氧化硅粒子填充聚氨酯泡沫材料的制备及其阻尼性能分析[J].塑料科技,2020,48(6):7-10.
21
熊亚,江猛,李宜航,等.白炭黑负载抗氧剂在天然橡胶中的分散性及防老化作用[J].材料导报,2021,35(6):6200-6205, 141.
22
FU Y, YANG C, LVOV Y M, et al. Antioxidant sustained release from carbon nanotubes for preparation of highly aging resistant rubber [J]. Chemical Engineering Journal, 2017, 328: 536-545.
23
马连湘,程凯,何燕.HDPE/CNTs复合材料的制备及性能研究[J].塑料科技,2017,45(4):25-30.
24
常金燕,邵会菊,刁延芳,等.功能化碳纳米管/SMANa/聚醚砜导电分离膜的制备及性能[J].塑料科技,2022,50(11):41-47.
25
A穆柄臻,陈海龙,何燕.碳纳米管/橡胶复合材料的制备方法及性能研究现状和进展[J].橡胶工业,2022,69(10):790-797.
26
ARSLANTUNALI D, BUDAK G, HASIRCI V. Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair[J]. Journal of Biomedical Materials Research, 2014, 120(3): 828-841.
27
法厚健,王建康,柳晶敏.碳纤维含量对热塑性聚氨酯弹性体复合材料发泡性能的影响[J].塑料科技,2022,50(6):18-22.
28
李莹,张晨,杜中杰.改性碳纳米管对聚氨酯发泡行为的影响[J].塑料,2019,48(2):1-4.
29
侯明月,李昂,邹威,等.氨基改性碳纳米管的制备及对聚氨酯泡沫材料的影响[J].高分子材料科学与工程,2016,32(1):179-183, 190.
30
陶帅,秦贤玉,刘锦春.抗静电聚醚型聚氨酯弹性体的合成及性能研究[J].当代化工,2018,47(10):2101-2104.
31
DING P, XIE X J, HE J W, et al. Fabrication of a novel chitosan-based macromolecular antioxidant and its effects on the anti-aging properties of styrene-butadiene rubber/silica composites[J]. Vinyl and Additive Technology, 2024, 30 (1): 89-101.

评论

PDF(2460 KB)

Accesses

Citation

Detail

段落导航
相关文章

/