
O2和N2等离子体处理对HDPE表面润湿性的影响研究
马子涵, 王洪艳, 袁少飞, 张建, 吴燕
O2和N2等离子体处理对HDPE表面润湿性的影响研究
Effect of Oxygen and Nitrogen Plasma Treatment on Surface Wettability of HDPE
为改善高密度聚乙烯(HDPE)表面润湿性,分别采用氧气(O2)和氮气(N2)等离子体对其表面进行改性,以水(H2O)和二碘甲烷(CH2I2)作为测试液对改性前后的表面接触角进行测试,分析了改性后表面润湿性变化,确定了O2和N2低温等离子体改善HDPE表面润湿性的最优工艺。进一步采用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射仪(XRD)、X光电子能谱微观结构(XPS)对最优工艺处理前后HDPE表面形貌、化学结构及官能团进行了分析。结果表明:经O2和N2等离子体处理后,HDPE表面润湿性显著提高,表面能增大,两种等离子体改善HDPE表面润湿性最优工艺分别为功率1 000 W、时间10 s、流速1.5 L/min(O2),功率800 W、时间15 s、流速2.5 L/min(N2);等离子体处理后,HDPE表面发生蚀刻现象,产生明显凹坑,并在其表面引入了含氧官能团C—O、C=O、O—C=O和含氮气官能团—C—NH2、—C—NH—。N2等离子体最优工艺处理对HDPE表面润湿性改善效果较O2明显。
In order to improve the wettability of high density polyethylene (HDPE) surface, the surface of HDPE was modified by oxygen (O2) and nitrogen (N2) plasma respectively, the surface contact angles before and after modification were tested with water (H2O) and diiodomethane (CH2I2), the wettability changes of the modified surface were analyzed, and the optimal process for improving the surface wettability by plasma of O2 and N2 was determined. Furthermore, the surface morphology, chemical structure and functional groups of HDPE were analyzed by scanning electron microscopy (SEM), fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the wettability and surface energy of HDPE were increased significantly after being treated by O2 and N2 plasma.The optimum process for improving the surface wettability of HDPE by two kinds of plasma was as follows: Power 800 W, time 10 s, flow rate 1.5 L/min for O2, power 1 000 W, time 15 s, flow rate 2.5 L/min for N2. After plasma treatment, the surface of HDPE was etched and pitted, and oxygen-containing functional groups C=O, O—C=O, and nitrogen-containing functional groups —C—NH2,—C—NH— were introduced into the surface of HDPE. N2 optimal plasma treatment has a better effect on the surface wettability of HDPE than that of O2.
Plasma / Surface wettability / HDPE
TQ325.12
1 |
李亚宁.弹性体/高密度聚乙烯与微孔结构协同增韧聚丙烯的制备、成型与性能[D].镇江:江苏科技大学,2023.
|
2 |
|
3 |
程晓林,王源升,王轩,等.高分子材料表面亲水改性研究进展[J].弹性体,2022,32(2):83-87.
|
4 |
|
5 |
|
6 |
文泽东.聚四氟乙烯等离子体和碳薄膜改性及结构和性能研究[D].兰州:兰州理工大学,2022.
|
7 |
李昱鹏,孟祥任,刘玉霞,等.射频等离子体改性PTFE表面液滴撞击接触起电对润湿性的影响[J].中国表面工程,2023,36(6):145-154.
|
8 |
沈云玉.PET/竹原纤维/不饱和聚酯复合材料的制备及性能研究[D].福州:福建农林大学,2014.
|
9 |
唐丽华.高分子材料低温等离子体改性的研究[D].兰州:西北师范大学,2011.
|
10 |
王洪艳,杜官本,郑荣波.利用DBD等离子体处理技术制备Fe3O4/云南松磁性复合材料[J].中南林业科技大学学报,2014,34(3):117-122.
|
11 |
王洪艳,杜官本,郑荣波,等.氧气和氮气冷离子体处理对木材胶合性能的影响:英文[J]. Agricultural Science Technology,2014,15(3):392-394, 443.
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
芮立晨.基于DBD等离子体的高聚物表面处理与功能化研究[D].无锡:江南大学,2023.
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
陈英烜,马辉煌,孙铭,等.冷等离子体改性聚乳酸纤维/热塑性淀粉复合材料的研究[J].复合材料科学与工程,2023(7):44-49, 56.
|
25 |
|
26 |
|
27 |
|
28 |
解林坤,李树材.低温O2等离子体对HDPE薄膜的表面改性[J].高分子材料科学与工程,2010,26(8):116-119.
|
29 |
|
30 |
赵颖.X射线光电子能谱仪应用于本科实验教学的实践[J].实验室研究与探索,2023,42(10):211-215.
|
/
〈 |
|
〉 |