
丙烯酸酯共混聚氯乙烯(ABR)管低温力学性能研究
胡少伟, 郭泽元, 金文粲, 唐鹏飞, 叶宇霄, 潘福渠
丙烯酸酯共混聚氯乙烯(ABR)管低温力学性能研究
Research on Low-Temperature Mechanical Properties of Acrylate Polymer Blended with Polyvinyl Chloride Resin (ABR) Pipes
为探究丙烯酸酯共混聚氯乙烯管(ABR)低温环境下的力学性能和使用性能,试验对ABR、高性能硬聚氯乙烯管(PVC-UH)和PN1.0 MPa型号的硬聚氯乙烯(PVC-U)管进行了多种温度条件下的压扁性能和拉伸性能测试,并对3种管道在5 ℃环境中的偏角密封性能进行了试验研究。同时,基于测试和试验结果建立了低温下的ABR管偏角密封性数值模型。试验和模拟的研究结果表明:低温条件下,ABR管的力学性能优于PVC-UH和PVC-U管,丙烯酸酯(ACR)改性剂的混入显著提高了ABR管低温下的压扁、拉伸和抗渗漏性能。在5 ℃的环境中,ABR管材的屈服强度为57.1 MPa,弹性模量为3 679.3 MPa,断裂伸长率为71.5%,环刚度为22.67 kN/m²,环柔性良好。同时,在5 ℃的环境中,ABR管线接口处在0.4 MPa静液压和8°偏角位移的作用下依旧能保持密封性。
To investigate the mechanical and operational properties of acrylate polymer blended with polyvinyl chloride resin (ABR) pipes in low-temperature environments, the study conducted compression and tensile performance tests on ABR, high performance unplasticized polyvinyl chloride pipe (PVC-UH), and unplasticized polyvinyl chloride (PVC-U) pipes of PN1.0 MPa specification under various temperature conditions. An experimental study on the tightness under internal pressure and angular deflection performance of the three types of pipes in a 5 ℃ environment was also carried out. Based on test and experimental results, a numerical simulation study of the deflection angle sealing performance of ABR pipes at low temperatures was conducted. The results indicate that at low-temperature conditions, the mechanical performance of ABR pipes surpasses that of PVC-UH and PVC-U pipes, the incorporation of acrylate polymer (ACR) modifier significantly enhances the compression, tensile, and leak resistance properties of ABR pipes at low-temperature conditions. At 5 ℃, the yield strength of ABR pipe material is 57.1 MPa, the elastic modulus is 3 679.3 MPa, the elongation at break is 71.5%, the ring stiffness is 22.67 kN/m2, and the ring flexibility is excellent. Simultaneously, in a 5 ℃ environment, the sealing integrity of ABR pipe joints remains intact under the influence of 0.4 MPa static hydraulic pressure and an 8° deflection angle displacement.
ABR pipes / Temperature / Mechanical properties / Leak tightness / Numerical simulation
TQ325.3
1 |
刘威,黄淳捷.地面不均匀沉降下埋地管道响应数值分析[J].同济大学学报:自然科学版,2022,50(3):370-377.
|
2 |
马小明,康逊.埋地管道不均匀沉降的应力及影响因素分析[J].重庆大学学报,2017,40(8):45-52.
|
3 |
张玉,侯正森,李大勇,等.地基沉降作用下管道安全性测试平台设计与研制[J].实验技术与管理,2021,38(7):135-140.
|
4 |
詹迪,马小明.非均匀沉降下沿海埋地天然气管道应力有限元分析与预测[J/OL].热加工工艺,1-5[2024-02-13].
|
5 |
季蓓蕾,刘啸奔,江金旭,等.软土沉降位移作用下大口径管道轴向应力状态研究[J].中国安全生产科学技术,2021,17(6):85-90.
|
6 |
郑志军,郑博士,马小明.土体不均匀沉降下越站管道应力有限元分析[J].化工设备与管道,2023,60(3):76-81.
|
7 |
|
8 |
武段旭,董琪,门玉明.浅埋PVC管道穿越挖填方场地时受力状态研究[J].铁道科学与工程学报,2017,14(10):2177-2184.
|
9 |
|
10 |
|
11 |
张玉,梁昊,林亮,等.不同沉降方式下埋地管道力学响应试验研究[J].岩土力学,2023,44(6):1645-1656.
|
12 |
巴振宁,王智恺,梁建文.温度和不均匀沉降耦合作用下埋地管道力学性能[J].油气储运,2018,37(10):1097-1103.
|
13 |
刘鹏,黄维和,李玉星,等.阶梯沉降条件下埋地钢管的力学响应规律[J].天然气工业,2023,43(12):110-120.
|
14 |
|
15 |
徐海翔,王永焕,林松涛.某核电工程大直径输水管道水密性能检测方法和检测装置研究[J].工业建筑,2011,41(S1):198-200.
|
16 |
|
17 |
唐鹏飞,胡少伟,刘国安,等.排水用PVC轴向中空壁管力学性能及结构优化分析[J/OL].工程科学与技术:1-11[2023-10-29].
|
18 |
朱瑞霞,甘露,武芷萱.几种常见给水PVC工程管道的对比分析[J].中国塑料,2021,35(3):50-58.
|
19 |
甄凤.阻燃耐高温PVC管材的制备及其应用研究[J].塑料科技,2023,51(3):59-62.
|
20 |
巨安奇,王娜,高玉铃,等.PVC/ABS共混物的热稳定性[J].高分子材料科学与工程,2009,25(6):74-77.
|
21 |
郭泽元,胡少伟,金文粲,等.PVC-U轴向中空壁管挤出成型工艺优化与数值模拟[J].塑料工业,2023,51(9):94-101.
|
22 |
承林,何志才,韦佳倩,等.PVC/EVA形状记忆管材的制备及性能研究[J].塑料工业,2018,46(7):155-158.
|
23 |
辛明亮,林华义,李茂东,等.聚氯乙烯管材研究进展及使用寿命评估[J].塑料科技,2015,43(8):95-98.
|
24 |
范英奎,朱瑞霞,彭金刚,等.PVC-UH管材壁厚对环向拉伸强度的影响[J].中国塑料,2019,33(8):38-43.
|
25 |
王原.CPVC稳定、流动、增韧、增强方面的研究[D].北京:北京化工大学,2018.
|
26 |
张周达.纳米碳酸钙填充型粉末橡胶复合粒子增韧聚氯乙烯[D].上海:华东理工大学,2012.
|
27 |
贾立蓉.超细全硫化粉末橡胶对硬质聚氯乙烯的改性研究[D].成都:四川大学,2004.
|
28 |
|
29 |
|
30 |
胡少伟,杨金辉.大口径高性能聚氯乙烯管道研发与工程安全保障技术[J].工程力学,2023,40(1):1-31.
|
/
〈 |
|
〉 |