微马达捕获降解微塑料的研究进展

戴运鹏, 夏文杰, 于家明, 王兢, 王莹

PDF(937 KB)
PDF(937 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (08) : 156-160. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.030
综述

微马达捕获降解微塑料的研究进展

作者信息 +

Research Progress on Micromotors Capture Degradation of Microplastics

Author information +
History +

摘要

对微马达捕获降解微塑料等相关领域进行了简单阐述,详细介绍了近几年发展迅速的微马达降解微塑料技术,重点围绕微马达的驱动方式和其在降解微塑料领域的应用进行阐述。微马达由于在水环境中的自主驱动性能被广泛应用于环境修复领域,简单总结了近几年微马达驱动方式及捕获降解微塑料方式的研究进展,着重展示了国内外研究中微马达在捕获降解微塑料方面的实际应用,讨论不同微马达对微塑料去除效果的差异。归纳总结微马达降解微塑料研究进展,不仅为环境保护提供科学指导,也进一步促进微马达在环境污染等方面的应用。最后,分析了微马达捕获降解微塑料所要面临的挑战和今后发展的方向。

Abstract

A brief description of the micromotors capture degradation of microplastics and other related fields are given, and the micromotors degradation of microplastics technology, which has been developing rapidly in recent years is introduced in detail, with a focus on the drive mode of micromotors and its application in the field of degradation of microplastics. Micromotors are widely used in environmental remediation due to their autonomous driving performance in the water environment. The research progress of micromotors driving mode and capturing degradation of microplastics in recent years is briefly summarized, with emphasis on the practical application of micromotors in capturing the degradation of microplastics in domestic and international research, and the differences in the removal effect of microplastics by different micromotors are discussed. Summarizing the research progress on microplastic degradation by micromotors provides scientific guidance for environmental protection and further promotes the application of micromotors in environmental pollution and other aspects. Finally, the challenges to be faced and future development direction for the capture of degraded microplastics by micromotors are analyzed.

关键词

微马达 / 微塑料 / 环境修复

Key words

Micromotors / Microplastics / Environmental remediation

中图分类号

X703

引用本文

导出引用
戴运鹏 , 夏文杰 , 于家明 , . 微马达捕获降解微塑料的研究进展. 塑料科技. 2024, 52(08): 156-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.030
DAI Yun-peng, XIA Wen-jie, YU Jia-ming, et al. Research Progress on Micromotors Capture Degradation of Microplastics[J]. Plastics Science and Technology. 2024, 52(08): 156-160 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.030

参考文献

1
BERGMANN M, TEKMAN M B, GUTOW L. Marine litter: Sea change for plastic pollution[J]. Nature, 2017, DOI: 10.1038/544297a.
2
BORRELLE S B, RINGMA J, LAW K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020, 369(6510): 1515-1518.
3
ROCHMAN C M, HOELLEIN T. The global odyssey of plastic pollution[J]. Science, 2020, 368(6496): 1184-1185.
4
杜明月,张厚勇,谢璇,等.大气微塑料样品的采集、分析方法研究进展[J].塑料科技,2024,52(6):132-137.
5
李君薇.水体中微塑料的采集、分离及检测技术研究进展[J].塑料科技,2021,49(8):113-116.
6
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, DOI: 10.1126/science.1094559.
7
ZHANG L S, XIE Y S, ZHONG S, et al. Microplastics in freshwater and wild fishes from the Lijiang River in Guangxi, Southwest China[J]. Science of the Total Environment, 2021, DOI: 10.1016/j.scitotenv.2020.142428.
8
冯丹,谭艾娟,杨贵利.水体微塑料的收集、检测及处理技术[J].塑料科技,2022,50(4):123-126.
9
KUTRALAM-MUNIASAMY G, PÉREZ-GUEVARA F, ELIZALDE-MARTÍNEZ I, et al. Overview of microplastics pollution with heavy metals: Analytical methods, occurrence, transfer risks and call for standardization[J]. Journal of Hazardous Materials, 2021, DOI: 10.1016/j.jhazmat.2021.125755.
10
WANG J. Can man-made nanomachines compete with nature biomotors?[J]. ACS Nano, 2009, 3(1): 4-9.
11
LIANG C, ZHAN C, ZENG F, et al. Bilayer tubular micromotors for simultaneous environmental monitoring and remediation[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35099-35107.
12
WANG L, KAEPPLER A, Dieter F, et al. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 32937-32944.
13
YE H, WANG Y, LIU X J, et al. Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removal[J]. Journal of Colloid and Interface Science, 2021, 588: 510-521.
14
PENG X, URSO M, KOLACKOVA M, et al. Biohybrid magnetically driven microrobots for sustainable removal of micro/nanoplastics from the aquatic environment[J]. Advanced Functional Materials, 2023, DOI: 10.1002/adfm.202307477.
15
FERNÁNDEZ‐MEDINA M, RAMOS‐DOCAMPO M A, HOVORKA O, et al. Recent advances in nano- and micromotors[J]. Advanced Functional Materials, 2020, DOI: 10.1002/adfm.201908283.
16
URSO M, IFFELSBERGER C, MAYORGA-MARTINEZ C C, et al. Nickel sulfide microrockets as self-propelled energy storage devices to power electronic circuits "on-demand"[J]. Small Methods, 2021, DOI: 10.1002/smtd.202100511.
17
NOURHANI A, KARSHALEV E, SOTO F, et al. Multigear bubble propulsion of transient micromotors[J]. Research, 2020, DOI: 10.34133/2020/7823615.
18
LIU K, OU J F, WANG S H, et al. Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy[J]. Applied Materials Today, 2020, DOI: 10.1016/j.apmt.2020.100694.
19
YANG J, LIU Y, LI J, et al. γ-Fe2O3@Ag-mSiO2-NH2 magnetic Janus micromotor for active water remediation[J]. Applied Materials Today, 2021, DOI: 10.1016/j.apmt.2021.101190.
20
ZHANG Q L, DONG R F, WU Y F, et al. Light-driven Au-WO3@C Janus micromotors for rapid photodegradation of dye pollutants[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4674-4683.
21
VILLA K, PUMERA M. Fuel-free light-driven micro/nanomachines: Artificial active matter mimicking nature[J]. Chemical Society Reviews, 2019, 48(19): 4966-4978.
22
DONG R F, ZHANG Q L, GAO W, et al. Highly efficient light-driven TiO2-Au Janus micromotors[J]. ACS Nano, 2016, 10(1): 839-844.
23
DONG R F, HU Y, WU Y F, et al. Visible-light-driven BiOI-based Janus micromotor in pure water[J]. Journal of the American Chemical Society, 2017, 139(5): 1722-1725.
24
URSO M, PUMERA M. Nano/microplastics capture and degradation by autonomous nano/microrobots: A perspective[J]. Advanced Functional Materials, 2022, DOI: 10.1002/adfm.202112120.
25
CHEN X, HOOP M, MUSHTAQ F, et al. Recent developments in magnetically driven micro- and nanorobots[J]. Applied Materials Today, 2017, 9: 37-48.
26
ZHOU H, MAYORGA-MARTINEZ C C, PANÉ S, et al. Magnetically driven micro and nanorobots[J]. Chemical Reviews, 2021, 121(8): 4999-5041.
27
LIN Z H, FAN X J, SUN M M, et al. Magnetically actuated peanut colloid motors for cell manipulation and patterning[J]. ACS Nano, 2018, 12(3): 2539-2545.
28
WANG X, CHEN X, ALCÂNTARA C C J, et al. MOFBOTS: Metal-organic-framework-based biomedical microrobots[J]. Advanced Materials, 2019, DOI: 10.1002/adma.201901592.
29
JI F T, LI T L, YU S M, et al. Propulsion gait analysis and fluidic trapping of swinging flexible nanomotors[J]. ACS Nano, 2021, 15(3): 5118-5128.
30
USSIA M, URSO M, KRATOCHVILOVA M, et al. Magnetically driven self-degrading zinc-containing cystine microrobots for treatment of prostate cancer[J]. Small, 2023, DOI: 10.1002/smll.202208259.
31
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, DOI: 10.1126/sciadv.1700782.
32
王成,李哲,魏健,等.水中微塑料来源、生态毒理效应及处理技术研究进展[J].环境工程技术学报,2023,13(5):1883-1892.
33
钱亚茹,石磊磊,沈茜,等.淡水环境中微塑料污染及毒性效应研究进展[J].环境工程技术学报,2022,12(4):1096-1104.
34
SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, et al. Detection of various microplastics in human stool: A prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457.
35
COX K D, COVERNTON G A, DAVIES H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12): 7068-7074.
36
杨敏,王莹,陈蕾,等.水中微塑料污染及转化去除的研究进展[J].中国塑料,2023,37(2):90-100.
37
包振宗,侯艳艳.环境中微塑料的老化特性及对污染物吸附影响的研究进展[J].塑料科技,2023,51(10):102-106.
38
URSO M, USSIA M, PUMERA M. Smart micro- and nanorobots for water purification[J]. Nature Reviews Bioengineering, 2023, 1(4): 236-251.
39
URSO M, USSIA M, PUMERA M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots[J]. Advanced Functional Materials, 2021, DOI: 10.1002/adfm.202101510.
40
YUAN K S, ASUNCIÓN-NADAL V D L, JURADO-SÁNCHEZ B, et al. 2D Nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion[J]. Chemistry of Materials, 2020, 32(5): 1983-1992.
41
LOHAUS C, KLEIN A, JAEGERMANN W. Limitation of Fermi level shifts by polaron defect states in hematite photoelectrodes[J]. Nature Communications, 2018, DOI: 10.1038/s41467-018-06838-2.
42
DIXIT F, ZIMMERMANN K, DUTTA R, et al. Application of MXenes for water treatment and energy-efficient desalination: A review[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2021.127050.
43
URSO M, USSIA M, NOVOTNÝ F, et al. Trapping and detecting nanoplastics by MXene-derived oxide microrobots[J]. Nature Communications, 2022, DOI: 10.1038/s41467-022-31161-2.
44
SARCLETTI M, PARK H, WIRTH J, et al. The remediation of nano-/microplastics from water[J]. Materials Today, 2021, 48: 38-46.
45
BELADI-MOUSAVI S M, HERMANOVÁ S, YING Y L, et al. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25102-25110.
46
LIU X T, GU S N, ZHAO Y J, et al. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review[J]. Journal of Materials Science & Technology, 2020, 56: 45-68.
47
XU Q X, HUANG Q S, LUO T Y, et al. Coagulation removal and photocatalytic degradation of microplastics in urban waters[J]. Chemical Engineering Journal, 2021, DOI: 10.1016/j.cej.2021.129123.
48
SHARMA S, BASU S, SHETTI N P, et al. Microplastics in the environment: Occurrence, perils, and eradication[J]. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2020.127317.
49
李瑞,李宁,梁澜,等.水环境中微塑料去除技术的研究进展[J].水处理技术,2022,48(2):1-5, 12.
50
KHAIRUDIN K, BAKAR N F A, OSMAN M S. Magnetically recyclable flake-like BiOI-Fe3O4 microswimmers for fast and efficient degradation of microplastics[J]. Journal of Environmental Chemical Engineering, 2022, DOI: 10.1016/j.jece.2022.108275.
51
ZHAO X, LI Z W, CHEN Y, et al. Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2006, 268(1): 101-106.
52
CAI L Q, WANG J D, PENG J P, et al. Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments[J]. Science of the Total Environment, 2018, 628(1): 740-747.
53
ZHOU H, MAYORGA-MARTINEZ C C, PUMERA M. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots[J]. Small Methods, 2021, DOI: 10.1002/smtd.202100230.
54
TANG K H D, LOCK S S M, YAP P S, et al. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects[J]. Science of The Total Environment, 2022, DOI: 10.1016/j.scitotenv.2022.154868.
55
OTHMAN A R, ABUHASAN H, MUHAMAD M H, et al. Microbial degradation of microplastics by enzymatic processes: A review[J]. Environmental Chemistry Letters, 2021, 19(4): 3057-3073.
56
金琰,蔡凡凡,王立功,等.生物可降解塑料在不同环境条件下的降解研究进展[J].生物工程学报,2022,38(5):1784-1808.
57
GIROTO J A, TEIXEIRA A C S C, NASCIMENTO C A O, et al. Degradation of Poly(ethylene glycol) in Aqueous Solution by Photo-Fenton and H2O2/UV Processes[J]. Industrial & Engineering Chemistry Research, 2010, 49(7): 3200-3206.
58
VIJAYALAKSHMI S P, MADRAS G. Photocatalytic degradation of poly(ethylene oxide) and polyacrylamide[J]. Journal of Applied Polymer Science, 2006, 100(5): 3997-4003.

评论

PDF(937 KB)

Accesses

Citation

Detail

段落导航
相关文章

/