改性纤维素填充改善聚乳酸性能的研究进展

雷高伟, 许从洁, 曹申奥, 姚立民, 吴敏, 代路

PDF(1073 KB)
PDF(1073 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (08) : 144-150. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.028
综述

改性纤维素填充改善聚乳酸性能的研究进展

作者信息 +

Research Progress on Improving the Performance of Polylactic Acid by Filling with Modified Cellulose

Author information +
History +

摘要

文章通过对改性纤维素填充聚乳酸复合材料的最新研究进展进行综述,旨在促进该复合材料的进一步研究和应用。通过介绍多种改性方法在改性纤维素填充改善聚乳酸性能中的应用,如纤维素表面修饰、功能化研究、接枝共聚改性等,总结了改性纤维素填充聚乳酸复合材料的性能改善效果,包括力学性能、热稳定性、降解性能、抗菌性、透氧性、紫外屏蔽性、结晶形态、缓释行为等方面。最后,讨论了该领域尚需深入研究的问题,例如改性纤维素填充聚乳酸成核作用与复合材料性能的探索,多种改性方式的协同作用机理和复合材料微观结构等。未来的研究应着重于优化改性方法、填充机理研究和改进复合材料的微观结构,以实现更好的改性效果和性能提升。同时进一步探索更多适用的改性方式和复合材料制备工艺,推动该领域的发展并拓展其应用领域。

Abstract

The article reviews the latest research progress of modified cellulose filled polylactic acid composites, aiming to promote further research and application of this composites. By introducing the application of different modification methods to improve the performance of polylactic acid, such as surface modification of cellulose, functionalization research, grafting copolymerization modification, etc, the performance improvement effect of modified cellulose filled polylactic acid composites was summarized, including mechanical properties, thermal stability, degradation properties, antimicrobial properties, oxygen permeability, UV shielding, crystalline morphology, slow release behavior, etc. Finally, further research in this field was discussed, such as exploring the nucleation mechanism and composite properties of modified cellulose filled polylactic acid, as well as the synergistic mechanism of multiple modification methods and the microstructure of composites. Future research should focus on optimizing modification methods, studying filling mechanisms, and improving the microstructure of composites to achieve better modification effects and performance enhancement. At the same time, further explore more suitable modification methods and composites preparation processes, promote the development of this field and expand its application areas.

关键词

改性纤维素 / 聚乳酸 / 复合材料 / 相容性 / 性能改善

Key words

Modified cellulose / Polylactic acid / Composites / Compatibility / Performance improvement

中图分类号

TB332 / TQ323.4

引用本文

导出引用
雷高伟 , 许从洁 , 曹申奥 , . 改性纤维素填充改善聚乳酸性能的研究进展. 塑料科技. 2024, 52(08): 144-150 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.028
LEI Gao-wei, XU Cong-jie, CAO Shen-ao, et al. Research Progress on Improving the Performance of Polylactic Acid by Filling with Modified Cellulose[J]. Plastics Science and Technology. 2024, 52(08): 144-150 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.028

参考文献

1
布美热木·克力木,丁建萍,张志峰.生物可降解聚乳酸(PLA)的合成方法及应用[J].聚酯工业,2023,36(2):26-31.
2
邓文韬,高岩,孙银银.聚乳酸玉米纤维/氨纶混纺织物服用性能研究[J].山东纺织科技,2021,62(4):11-13.
3
MALEK N S A, FAIZUWAN M, KHUSAIMI Z, et al. Preparation and characterization of biodegradable polylactic acid (PLA) film for food packaging application: A review[C]// Journal of Physics Conference Series, 2021, 192: 379-388.
4
SHOJAEIARANI J, BAJWA D S, STARK N M, et al. Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites[J]. Composites, 2019, 161: 483-489.
5
PHATTARATEERA S, PATTAMAPROM C. Comparative performance of functional rubbers on toughness and thermal property improvement of polylactic acid[J]. Materials Today Communications, 2019, 19: 374-382.
6
SUN C, LI W L, CHEN X J, et al. Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour[J]. Renewable Energy, 2021, 171: 254-265.
7
SEBASTIEN A. Modified polylactic acid with improved impact resistance in the presence of a thermoplastic elastomer and the influence of fused filament fabrication on its physical properties[J]. Journal of Composites Science, 2021, DOI: 10.3390/jcs5090232.
8
XU Y, QIU Y, YAN C T, et al. A novel and multifunctional flame retardant nucleating agent towards superior fire safety and crystallization properties for biodegradable poly (lactic acid)[J]. Advanced Powder Technology: The internation Journal of the Society of Powder Technology, 2021, 32(11): 4210-4221.
9
CHOI S, KIM J W, LEE S, et al. Mechanical and biocompatibility properties of sintered titanium powder for mimetic 3D-printed bone scaffolds[J]. ACS Omega, 2022, 7(12): 10340-10346.
10
LI X R, LIN Y, LIU M L, et al. A review of research and application of polylactic acid composites[J]. Journal of Applied Polymer Science, 2023, DOI: 10.1002/app.53477.
11
何江,王大威.纤维素材料的改性与研究进展[J].复合材料学报,2022,39(7):3121-3130.
12
ZHOU L, KE K, YANG M B, et al. Recent progress on chemical modification of cellulose for high mechanical-performance poly (lactic acid)/cellulose composite: A review[J]. Composites Communications, 2020, DOI: 10.1016/j.coco.2020.100548.
13
陈杰,汪磊,龙柱,等.微晶纤维素增强热塑性淀粉塑料薄膜的研究进展[J].塑料科技,2023,51(1):124-128.
14
REN Z C, GUO R, ZHOU X Y, et al. Effect of amorphous cellulose on the deformation behavior of cellulose composites: Molecular dynamics simulation[J]. RSC Advances, 2021, 11(33): 19967-19977.
15
阳思思,吴红枚,刘玉媛,等.聚乳酸/纳米纤维素复合材料的制备与性能研究进展[J].塑料科技,2022,50(7):124-128.
16
PENG X, QIN J S, HUANG D, et al. Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBN[J]. Macromolecular Materials and Engineering, 2022, DOI: 10.1002/mame.202200424.
17
YAN X Y, WANG D C, WANG J, et al. CO2 responsive self-standing Pickering emulsion gel stabilized with rosin-based surfactant modified cellulose nanofibrils[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.125717.
18
YAO Z Z, MI S, CHEN B, et al. Rapid homogeneous acylation of cellulose in a CO2 switchable solvent by microwave heating[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(51): 17327-17335.
19
AKONDA M, ALIMUZZAMAN S, SHAH D U, et al. Physico-mechanical, thermal and biodegradation performance of random flax/polylactic acid and unidirectional flax/polylactic acid biocomposites[J]. Fibers, 2018, 6(4): 98-107.
20
PORNBENCHA K, BOONMALERT T, SEUBSAI A, et al. Synthesis of polylactic acid/cellulose composite extracted from pineapple leaves[J]. Key Engineering Materials, 2021, 891: 131-136.
21
OUAJAJ S, PHONGTAMRUG S. Morphological, thermal and mechanical properties of poly (lactic acid) /cellulose/nano-clay composite[J]. Key Engineering Materials, 2020, 856: 331-338.
22
JAMALUDDIN N, HSU Y I, ASOH T A, et al. Effects of acid-anhydride-modified cellulose nanofiber on poly (lactic acid) composite films[J]. Nanomaterials, 2021, 11(3): 753-768.
23
LONG S Y, ZHONG L, LIN X L, et al. Preparation of formyl cellulose and its enhancement effect on the mechanical and barrier properties of polylactic acid films[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2021, 172(1): 82-92.
24
WANG Q M, CHEN X Y, ZENG S H, et al. In-situ polycondensate-coated cellulose nanofiber heterostructure for polylactic acid-based composites with superior mechanical and thermal properties[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2023, DOI: 10.1016/j.ijbiomac.2023.124515.
25
ORELLANA J L, WICHHART D, KITCHENS C L. Mechanical and optical properties of polylactic acid films containing surfactant-modified cellulose nanocrystals[J]. Journal of Nanomaterials, 2018(4): 1-12.
26
JIN K Y, TANG Y J, ZHU X M, et al. Polylactic acid based biocomposite films reinforced with silanized nanocrystalline cellulose[J]. International Journal of Biological Macromolecules, 2020, 162(1): 1109-1117.
27
BIN Y Z, YANG B, WANG H. The effect of a small amount of modified microfibrillated cellulose and ethylene-glycidyl methacrylate copolymer on the crystallization behaviors and mechanical properties of polylactic acid[J]. Polymer Bulletin, 2018, 75(8): 3377-3394.
28
AL-MOBARAK T, MINA M F, GAFUR M A. Material properties of sponge-gourd fiber-reinforced polylactic acid biocomposites: Effect of fiber weight ratio, chemical treatment, and treatment concentrations[J]. Journal of Thermoplastic Composite Materials, 2019, 32(7): 967-994.
29
PAL N, BANERJEE S, ROY P, et al. Melt‐blending of unmodified and modified cellulose nanocrystals with reduced graphene oxide into PLA matrix for biomedical application[J]. Polymers for Advanced Technologies, 2019, 30(12): 3049-3060.
30
KASA S N, OMAR M F, ABDULLAH M M A B, et al. Effect of unmodified and modified nanocrystalline cellulose reinforced polylactic acid (PLA) polymer prepared by solvent casting method morphology, mechanical and thermal properties[J]. Materials Science, 2017, 54(1): 91-97.
31
ZHANG K, LIN J, HAO C, et al. Effect of nano-hydroxyapatite modification of bamboo fiber on the properties of bamboo fiber/polylactic acid composites[J]. Bioresources, 2019, 14(1): 1694-1707.
32
ZHAO B, ZHANG Y, REN H W. Effects of microcrystalline cellulose surface modification on the mechanical and thermal properties of polylactic acid composite films[J]. Plastics Rubber and Composites, 2020, 49(9/10): 450-455.
33
KASA S N, OMAR M F, ISMAIL I N. Characterization and properties of acetylated nanocrystalline cellulose (aNC) reinforced polylactic acid (PLA) polymer[C]//American Institute of Physics Conference Series, 2017, DOI:10.1088/1757-899X/965/1/012017.
34
JIANG X, HUBBE M A. Green modification of cellulose nanocrystals and their reinforcement in nanocomposites of polylactic acid[J]. Paper and Biomaterials, 2018, 3(4): 10-18.
35
DEBELI D K, GUO J, LI Z, et al. Treatment of ramie fiber with different techniques: The influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite[J]. Iranian Polymer Journal, 2017, 26(5): 341-354.
36
CHEN P Y, LIAN H Y, SHIH Y F, et al. Chemically functionalized plant fibers and carbon nanotubes for high compatibility and reinforcement in polylactic acid (PLA) composite[J]. Journal of Polymers & the Environment, 2018, 26(5): 1962-1968.
37
ROSLI N A, AHMAD I, ANUAR F H, et al. Application of polymethylmethacrylate-grafted cellulose as reinforcement for compatibilised polylactic acid/natural rubber blends[J]. Carbohydrate Polymers, 2019, 213: 50-58.
38
MAXIMILIAN R, JUSTUS F K, RENEE L, et al. New functional polymer materials via click chemistry-based modification of cellulose acetate[J]. ACS Omega, 2023, 8(11): 9889-9895.
39
ANTONIO N N, SOHTARO K, HITOSHI T. Polylactic acid reinforced with mixed cellulose and chitin nanofibers—Effect of mixture ratio on the mechanical properties of composites[J]. Journal of Composites Science, 2018, 2(2): 36-48.
40
RASIDI M, SYAHMIE M, CHEW, et al. The effect of filler content and chemical modification on the properties of poly (lactic acid)/pandanus amaryllifolius biocomposite films[C]// IOP Conference Series: Materials Science and Engineering, 2020, DOI: 10.1088/1757-899X/957/1/012010.
41
KHIEOMUANG J, THONGPIN C. Fabrication of non-woven hybrid natural fiber/poly (lactic acid) composite via prepreg lamination[J]. IOP Conference Series Materials Science and Engineering, 2020, DOI: 10.1088/1757-899X/965/1/012017.
42
KITTIKORN T, KADEA S, HEDTHONG R. Effect of epoxidized natural rubber-grafted-modified microfibrillated cellulose to compatibility in wood pulp/polylactic acid biocomposite: Mechanical-thermal and durability analysis[J]. Journal of Polymers and the Environment, 2023, 31(6): 2473-2485.
43
WU J J, GAO N, JIANG L, et al. The coupling effect of cellulose nanocrystal and strong shear field achieved the strength and toughness balance of polylactide[J]. International Journal of Biological Macromolecules, 2022, 207: 927-940.
44
AN L, PERKINS P, YI R L, et al. Development of polylactic acid based antimicrobial food packaging films with N-halamine modified microcrystalline cellulose[J]. International Journal of Biological Macromolecules, 2023, DOI: 10.1016/j.ijbiomac.2023.124685.
45
ABDULKHANI A, HOSSEINZADEH J, ASHORI A, et al. Evaluation of the antibacterial activity of cellulose nanofibers/polylactic acid composites coated with ethanolic extract of propolis[J]. Polymer Composites, 2017, 38(1): 13-19.
46
SHOJAEIARANI J, SHIRZADIFAR A, SHINE C, et al. Hybrid nanocomposite packaging films from cellulose nanocrystals, zinc sulfide quantum dots reinforced polylactic acid with fluorescent and antibacterial properties[J]. Polymer Engineering and Science, 2022, 62(5): 1562-1570.
47
NIU X, LIU Y T, SONG Y, et al. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging[J]. Carbohydrate Polymers, 2018, 183: 102-109.
48
唐丽丽,陈蕴智,张正健,等.微纤化纤维素/聚乳酸薄膜的制备及性能分析[J].包装工程,2017, 38(15):47-52.
49
SHOJAEIARANI J, BAJWA D S, RYAN C, et al. Enhancing UV-shielding and mechanical properties of polylactic acid nanocomposites by adding lignin coated cellulose nanocrystals[J]. Industrial Crops and Products, 2022, DOI: 10.1016/j.indcrop.2022.114904.
50
CHEN P Y, LIAN H Y, SHIH Y F, et al. Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites[J]. Materials Chemistry and Physics, 2017, 196: 249-255.
51
HOU L L, CHEN J H, LIU J G. Octadecylamine graft-modified cellulose nanofiber and its reinforcement to poly (butylene adipate-co-terephthalate) composites[J]. Paper and Biomaterials, 2022, 7(3): 42-50.
52
WAN Z W, LI M L, ZHUANG Y Z, et al. Effect of electrospun stereocomplex PLA fibers and modified cellulose nanocrystals on crystallization of poly (L-lactic acid)[J]. Journal of Applied Polymer Science, 2023, DOI: 10.1002/app.53839.
53
PENG Q Y, CHENG J Z, LU S R, et al. Electrospun hyperbranched polylactic acid—Modified cellulose nanocrystals/polylactic acid for shape memory membranes with high mechanical properties[J]. Polymers for Advanced Technologies, 2020, 31(1): 15-24.
54
YU H Y, ZHANG H, ABDALKARIM S Y H, et al. Interfacial compatible poly (ethylene glycol) chains modified cellulose nanosphere as bifunctional reinforcements in green polylatic acid for food packagings[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 583-593.
55
GAO C T, WU Y, XIE H B. Fully bio-based composites of poly (lactic acid) reinforced with cellulose-graft-poly-(ℇ-caprolactone) copolymers[J]. Journal of Renewable Materials, 2023, 11(3): 1137-1152.
56
LIU C D, YANG Y T, CUI B Y, et al. Biocomposites of polylactic acid reinforced by DL-lactic acid-grafted microfibrillated cellulose[J]. Journal of Renewable Materials, 2022, 10(11): 2961-2972.
57
WANG M X, ABDALKARIM S Y H, GONG R X, et al. Controlled long-term sustained release of poly (lactic acid) composite microspheres with dual-responsive cellulose nanocrystals[J]. CrystEngComm, 2023, 25(28): 4100-4110.

基金

新疆科技学院大学生创新创业训练计划项目(S202213561019)
新疆科技学院校级科研基金项目“改性纳米分子筛作用于聚乳酸结晶机理及性能构效关系研究”(2024-KYZD02)

评论

PDF(1073 KB)

Accesses

Citation

Detail

段落导航
相关文章

/