基于DOE设计及MOPSO算法的汽车滤清器外壳多目标优化分析

黄关山, 王新艳

PDF(2125 KB)
PDF(2125 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (08) : 105-108. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.020
计算机辅助技术

基于DOE设计及MOPSO算法的汽车滤清器外壳多目标优化分析

作者信息 +

Multi-Objective Optimization Analysis of Automotive Filter Shell Based on DOE Design and MOPSO Algorithm

Author information +
History +

摘要

为了获取质量良好的汽车滤清器外壳,通过Moldlfow软件对汽车滤清器进行模流分析,并且以滤清器注塑成型过程的模具温度、熔体温度、保压压力以及冷却时间为研究变量,制件最终的翘曲变形量为研究目标,利用DOE设计获取实验样本,根据样本结果建立Kriging模型,最后通过MOPSO算法对最小制件翘曲变形量进行全局寻优,最终得到最佳的成型工艺参数组合。结果表明:当制件的模具温度为43 ℃、熔体温度为230 ℃、保压压力为33 MPa、冷却时间为15 s时,滤清器的翘曲变形量最小为0.620 0 mm,预测值为0.602 7 mm,两者之间误差为3.2%,较未优化前降低了1.242 0 mm,说明通过DOE设计以及MOPSO算法能够有效提升注塑制件成型质量。

Abstract

In order to obtain a good quality automotive filter shell, the automobile filter was analyzed by Moldlfow software, the mold temperature, melt temperature, holding pressure and cooling time of the filter injection molding process were taken as the research variables, and the final warpage deformation of the product was taken as the research target. The experimental samples were obtained by DOE design, and the Kriging model was established according to the sample results. Finally, the minimum warpage deformation of the parts was globally optimized by MOPSO algorithm, and a set of optimal molding process parameters were obtained. The results show that when the mold temperature of the parts is 43 ℃, the melt temperature is 230 ℃, the holding pressure is 33 MPa, and the cooling time is 15 s, the warpage deformation of the filter is 0.620 0 mm, and the predicted value is 0.602 7 mm. The error between the two is 3.2%, and it is 1.242 0 mm lower than before optimization, and the molding quality of injection molding parts can be effectively improved by DOE design and MOPSO algorithm.

关键词

滤清器外壳 / DOE设计 / Kriging模型 / MOPSO算法 / 工艺优化

Key words

Filter shell / DOE design / Kriging model / MOPSO algorithm / Process optimization

中图分类号

TQ320.5+2 / TP391.7

引用本文

导出引用
黄关山 , 王新艳. 基于DOE设计及MOPSO算法的汽车滤清器外壳多目标优化分析. 塑料科技. 2024, 52(08): 105-108 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.020
HUANG Guan-shan, WANG Xin-yan. Multi-Objective Optimization Analysis of Automotive Filter Shell Based on DOE Design and MOPSO Algorithm[J]. Plastics Science and Technology. 2024, 52(08): 105-108 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.020

参考文献

1
张中伟,何书珩.长玻纤增强PP材料界面行为对其力学性能的影响[J].工程塑料应用,2022(8):114-118.
2
范希营,王春能,郭永环,等.汽车滤清器上壳体注塑模具[J].机床与液压,2016,44(2):1-3.
3
钱志芳.摩托车空气滤清器滤芯的注塑成型工艺分析[J].内燃机与配件,2016(11):38-39.
4
蔡厚道.基于响应面和灰色关联分析的汽车滤清器盖注塑工艺多目标优化[J].塑料工业,2017(1):48-52.
5
郑尧刚,翟豪瑞,熊新,等.基于Moldex3D和灰色关联理论在空气滤清器上壳的工艺优化[J].工程塑料应用,2018,46(10):72-75, 85.
6
庞广富,陶权,余鹏.基于综合加权评分法的空气滤清器注塑成型优化[J].塑料科技,2022(1):103-107.
7
黄盛举,王艳.基于ABAQUS某汽车空气滤清器的模态分析及结构优化[J].建模与仿真,2022,11(2):13.
8
皮卫,熊建武.基于RBF神经网络断路器注塑成型工艺优化[J].塑料科技,2023,51(6):70-74.
9
刘金娥,刘婉慈.自动化传感器外壳注塑成型工艺优化研究[J].塑料科技, 2023,51(5):95-99.
10
曹贵崟.汽缸盖护罩外壳注塑模有限元分析与工艺参数优化[J].现代工业经济和信息化,2022(4):44-45, 47.
11
魏婷,汪晓洲,张飞.基于DOE设计与MOPSO算法的PVC建筑排水管多目标优化分析[J].塑料科技,2021,49(2):102-105.
12
季宁,张卫星,于洋洋,等.基于Kriging代理模型和MOPSO算法的注塑成型质量多目标优化[J].塑料工业,2020,48(5):67-71.
13
刘文娟,王新宇,李征,等.基于Kriging代理模型的注塑件残余应力优化分析[J].塑料工业,2015,43(1):53-57.
14
周香,陈文琳,王晓花,等.基于Kriging代理模型和遗传算法的注塑件翘曲优化[J].塑性工程学报,2015,22(2):142-147.
15
栗雪娟,史加荣,杨春晓.基于IMOPSO方法的注塑件熔接痕质量的多目标优化[J].塑性工程学报,2016,23(4):173-179.

基金

广东省珠海城市职业技术学院质量工程项目(ZJLS20230308)
广东省珠海城市职业技术学院科研项目“汽车频拍振动的识别与控制研究”(KY20231216)

评论

PDF(2125 KB)

Accesses

Citation

Detail

段落导航
相关文章

/