
SiO2纳米粒子增强PVC电缆材料性能研究
张国平, 祝文军
SiO2纳米粒子增强PVC电缆材料性能研究
Study on the Properties of SiO2 Nanoparticles Reinforced PVC Cable Materials
通过氨基硅烷偶联剂(GAS)对二氧化硅(SiO2)纳米颗粒进行改性,使用改性的SiO2纳米颗粒增强聚氯乙烯(PVC)纳米复合材料的介电性能和力学性能,且研究改性SiO2纳米颗粒掺量对其性能的影响。结果表明:随着改性SiO2添加量的增加,PVC复合材料的相对介电常数呈现先降低后升高的趋势,且在添加量为1.5%时达到最低,为2.97,相较于纯PVC材料的相对介电常数降低了26.12%;而PVC复合材料在直流和支流电场下的击穿强度均呈现先上升后下降的趋势,其中均在添加量为1.0%时达到最高,在直流和支流电场条件下的击穿强度分别为70.21、60.12 kV/mm,且较纯PVC材料的击穿强度分别增加了20.48%、30.36%。此外,在1.0%添加量下,PVC复合材料的拉伸强度、弯曲强度及断裂伸长率分别为49.33 MPa、92.67 MPa和187.34%。
Silicon dioxide(SiO2) nanoparticles were modified using aminosilane coupling agents (GAS), and the modified SiO2 nanoparticles were used to enhance the dielectric and mechanical properties of PVC nanocomposites. The effects of the addition of modified SiO2 nanoparticles on them were studied. The results showed that with the increase of modified SiO2, the relative dielectric constant of PVC composites shows a trend of first decreasing and then increasing, and reaches the lowest value of 2.97 at 1.5% addition, which is 26.12% lower than that of pure PVC materials. The breakdown strength of PVC composites shows a trend of first increasing and then decreasing under both direct current and branch electric fields, with the highest breakdown strength reached at a addition of 1.0%. The breakdown strength under direct current and branch electric field conditions is 70.21, 60.12 kV/mm, respectively, and the breakdown strength of pure PVC materials has increased by 20.48% and 30.36%, respectively. In addition, at a addtion of 1.0%, the tensile strength, flexural strength and elongation at break of PVC composites are 49.33 MPa, 92.67 MPa and 187.34%, respectively.
二氧化硅 / 氨基硅烷偶联剂 / 聚氯乙烯 / 介电性能 / 力学性能
Silicon dioxide / Aminosilane coupling agent / PVC / Dielectric performance / Mechanical property
TB33 / TQ325.3
1 |
苏星瑞,白时兵,杨双桥.聚氯乙烯热稳定剂的行业现状与发展趋势[J].塑料工业,2023,51(4):8-12.
|
2 |
杜颖,庞磊,杨健根,等.聚氯乙烯和碳纳米材料复合研究进展[J].广州化工,2022,50(22):33-35.
|
3 |
|
4 |
黄兴溢,张强,江平开.纳米颗粒形状对线性低密度聚乙烯纳米复合介质电学性能的影响[J].中国电机工程学报,2016,36(24):6606-6612.
|
5 |
张城城,任兆辉,任强,等.纳米粒子形貌对聚吡咯/LDPE纳米复合材料直流介电性能的影响[J].复合材料学报,2023,40(5):2598-2608.
|
6 |
李经龙,姜行伟,焦志伟,等.微层聚氯乙烯/纳米二氧化硅复合材料的结构与性能[J].塑料科技,2018,46(9):19-24.
|
7 |
王冠男,乐园,潘亭军,等.新型聚酯多元醇改性聚异氰脲酸酯泡沫的研制[J].聚氨酯工业,2023,38(3):10-14.
|
8 |
刘丹,邱华.硅烷偶联剂IPTS改性纳米ZnO的制备及性能研究[J].化工新型材料,2023,51(7):271-275.
|
9 |
邓传福,颜干才,杜年军.硅烷偶联剂改性纳米碳酸钙在PVC复合材料的应用研究[J].橡塑技术与装备,2023,49(11):13-17.
|
10 |
陈颖,翟多多,李晓斌,等.聚甲基/丙烯酸甲酯@二氧化硅@铝颜料增强PVC树脂力学性能[J].现代化工,2019,39(7):143-147.
|
11 |
魏庆渤.纳米二氧化硅改性聚氯乙烯的研究[D].开封:河南大学,2019.
|
12 |
|
13 |
|
14 |
娄冬,程格格,刘杰.PVC/GR/SiO2电缆套的制备和阻燃性能研究[J].塑料科技,2021,49(5):31-34.
|
15 |
穆娟,丁海琴,吕惠芳.纳米二氧化硅增强聚氯乙烯韧性和塑化性能的研究[J].塑料科技,2022,50(1):62-65.
|
16 |
苏振华.基于氨基硅烷偶联剂的底涂剂和硅基纳米荧光材料应用研究[D].杭州:杭州师范大学,2021.
|
17 |
陈柯旭.荧光功能硅烷偶联剂标记SiO2及其在硅橡胶中的分散性研究[D].绵阳:西南科技大学,2019.
|
/
〈 |
|
〉 |