基于功能化离子液体的高性能纳滤膜的制备及性能研究

胡然, 亢健, 张毅, 向明

PDF(1647 KB)
PDF(1647 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (08) : 60-64. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.012
加工与应用

基于功能化离子液体的高性能纳滤膜的制备及性能研究

作者信息 +

Preparation and Performance of High-Performance Nanofiltration Membranes Based on Functionalized Ionic Liquids

Author information +
History +

摘要

选用1-胺丙基-3-甲基咪唑溴盐(AMIB)作为水相添加剂,通过界面聚合制备了高性能纳滤膜,通过傅里叶变换红外光谱仪和X射线光电子能谱分析膜化学组成,通过扫描电子显微镜观察改性前后膜的表面和截面形貌变化,通过原子力显微镜观察膜的粗糙度变化,通过水接触角测试仪对改性前后膜表面亲水性进行对比,采用错流过滤平板膜测试仪对改性前后膜的分离性能和水通量进行测试。结果表明:与未改性纳滤膜相比,改性膜结构更疏松、膜厚更薄,表面变得亲水,改性膜在对Na2SO4保持在99%的高水平截留下,水通量大幅提升,从改性前的50.27 L/(m2·h)提升到75.97 L/(m2·h),长期稳定性优异。进一步对AMIB复合改性纳滤膜的结构与性能联系机理进行了探讨,为制备高性能纳滤膜提供了新的思路和方法。

Abstract

1-aminopropyl-3-methylimidazole bromide (AMIB) was used as an aqueous additive to prepare high-performance nanofiltration membranes by interfacial polymerization. The chemical composition of the membranes was analyzed by Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy, and the changes in the surface and cross-section morphology of the membranes before and after the modification were observed by scanning electron microscope. The changes in the roughness of the membranes were observed by atomic force microscope, and the membrane surface hydrophilicity before and after modification was compared by water contact angle tester. The separation performance and water flux of the membrane before and after modification were tested by staggered-flow filtration flat-plate membrane tester. The results showed that compared with the unmodified NF membranes, the modified membranes had a looser structure, a thinner membrane thickness, and the surface became hydrophilic. The modified membranes maintained a high level of 99% rejection of Na2SO4 while the water flux was greatly increased from 50.27 L/(m2·h) before modification to 75.97 L/(m2·h). The long-term stability was excellent. The mechanism linking the structure and performance of AMIB composite modified nanofiltration membranes was further explored, which provided new ideas and methods for the preparation of high-performance nanofiltration membranes

关键词

聚酰胺 / 纳滤膜 / 离子液体 / 高性能

Key words

Polyamide / Nanofiltration membrane / Ionic liquids / High-performance

中图分类号

TQ051.893

引用本文

导出引用
胡然 , 亢健 , 张毅 , . 基于功能化离子液体的高性能纳滤膜的制备及性能研究. 塑料科技. 2024, 52(08): 60-64 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.012
HU Ran, KANG Jian, ZHANG Yi, et al. Preparation and Performance of High-Performance Nanofiltration Membranes Based on Functionalized Ionic Liquids[J]. Plastics Science and Technology. 2024, 52(08): 60-64 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.012

参考文献

1
MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, DOI: 10.1126/sciadv.1500323.
2
KUMMU M, GUILLAUME J H, DE MOEL H, et al. The world's road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability[J]. Scientific Reports, 2016, DOI: 10.1038/srep38495.
3
PENG H, GUO J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review[J]. Environmental Chemistry Letters, 2020, 18: 2055-2068.
4
VAN DER BRUGGEN B. Chemical modification of polyethersulfone nanofiltration membranes: A review[J]. Journal of Applied Polymer Science, 2009, 114(1): 630-642.
5
WANG Z Y, WANG Z X, LIN S H, et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination[J]. Nature Communications, 2018, DOI: 10.1038/s41467-018-04467-3.
6
LIU T Y, YUAN H G, LI Q, et al. Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh mono-/multivalent ion selectivity[J]. ACS nano, 2015, 9(7): 7488-7496.
7
QIAN J G, YAN R Y, LIU X M, et al. Modification to solution-diffusion model for performance prediction of nanofiltration of long-alkyl-chain ionic liquids aqueous solutions based on ion cluster[J]. Green Energy & Environment, 2020, 5(1): 105-113.
8
GOHIL J M, RAY P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination[J]. Separation and Purification Technology, 2017, 181: 159-182.
9
OTHMAN N H, ALIAS N H, FUZIL N S, et al. A review on the use of membrane technology systems in developing countries[J]. Membranes, 2021, DOI:10.3390/membranes12010030.
10
ZHANG R J, TIAN J Y, GAO S S, et al. How to coordinate the trade-off between water permeability and salt rejection in nanofiltration?[J]. Journal of Materials Chemistry A, 2020, 8(18): 8831-8847.
11
YANG Z, SUN P F, LI X, et al. A critical review on thin-film nanocomposite membranes with interlayered structure: mechanisms, recent developments, and environmental applications[J]. Environmental Science & Technology, 2020, 54(24): 15563-15583.
12
XIE W, GEISE G M, FREEMAN B D, et al. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine[J]. Journal of Membrane Science, 2012, 403: 152-161.
13
FANG W X, SHI L, WANG R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening[J]. Journal of Membrane Science, 2013, 430: 129-139.
14
PAN Y Y, XU R P, Z H, et al. Enhanced both perm-selectivity and fouling resistance of poly (piperazine-amide) nanofiltration membrane by incorporating sericin as a co-reactant of aqueous phase[J]. Journal of Membrane Science, 2017, 523: 282-290.
15
TAN Z, CHEN S F, PENG X S, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018, 360(6388): 518-521.
16
HAO Y F, LI Q, HE B Q, et al. An ultrahighly permeable-selective nanofiltration membrane mediated by an in situ formed interlayer[J]. Journal of Materials Chemistry A, 2020, 8(10): 5275-5283.
17
QI S R, FANG W X, SITI W, et al. Polymersomes-based high-performance reverse osmosis membrane for desalination[J]. Journal of Membrane Science, 2018, 555: 177-184.
18
JIANG Z, KARAN S, LIVINGSTON A G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis[J]. Advanced Materials, 2018, DOI: 10.1002/adma.201705973.
19
LIANG Y Z, ZHU Y Z, LIU C, et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation[J]. Nature Communications, 2020, DOI: 10.1038/s41467-020-15771-2.
20
WANG J F, LUO J Q, FENG S C, et al. Recent development of ionic liquid membranes[J]. Green Energy & Environment, 2016, 1(1): 43-61.
21
KONG J, HE H Y. Challenge and opportunity of ionic liquids—An interview with Prof. Douglas R. Macfarlane[J]. Green Energy & Environment, 2020, 5(2): 243-245.
22
WU Y, XU J, MUMFORD K, et al. Recent advances in carbon dioxide capture and utilization with amines and ionic liquids[J]. Green Chemical Engineering, 2020, 1(1): 16-32.
23
WU H H, LIN Y K, FENG W Y, et al. A novel nanofiltration membrane with [MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. Journal of Membrane Science, 2020, DOI:10.1016/j.memsci.2020.117997.
24
ZHANG X, ZHENG J F, JIN P R, et al. A PEI/TMC membrane modified with an ionic liquid with enhanced permeability and antibacterial properties for the removal of heavy metal ions[J]. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2022.129010.
25
XIAO H F, CHU C H, XU W T, et al. Amphibian-inspired amino acid ionic liquid functionalized nanofiltration membranes with high water permeability and ion selectivity for pigment wastewater treatment[J]. Journal of Membrane Science, 2019, 586: 44-52.
26
HE B Y, PENG H W, CHEN Y, et al. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. Journal of Membrane Science, 2020, DOI: 10.1016/j.memsci.2020.118202.
27
CHEN Y H, ZHANG T F, CHAI D D, et al. Enhancing the NaCl/Na2SO4 separation selectivity and chlorine resistance of nanofiltration membranes by incorporating novel designed starch nanoparticles[J]. Applied Surface Science, 2022, DOI: 10.1016/j.apsusc.2022.154417.
28
PENG H W, ZHAO Q. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Advanced Functional Materials, 2021, DOI: 10.1002/adfm.202009430.
29
BAI L M, LIU Y T, BOSSA N, et al. Incorporation of cellulose nanocrystals (CNCs) into the polyamide layer of thin-film composite (TFC) nanofiltration membranes for enhanced separation performance and antifouling properties[J]. Environmental Science & Technology, 2018, 52(19): 11178-11187.
30
ZHANG T L, ZHANG K R, LI J H, et al. Simultaneously enhancing hydrophilicity, chlorine resistance and anti-biofouling of APA-TFC membrane surface by densely grafting quaternary ammonium cations and salicylaldimines[J]. Journal of Membrane Science, 2017, 528: 296-302.

基金

国家自然科学基金(51503134)
国家自然科学基金(51721091)
高分子材料工程国家重点实验室优秀青年学者基金(SKLPME 2017-3-02)
中央高校基本科研业务

评论

PDF(1647 KB)

Accesses

Citation

Detail

段落导航
相关文章

/