聚丙烯高温催化热解实验研究

李臻, 周智, 罗伟, 肖元化

PDF(1160 KB)
PDF(1160 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (08) : 34-38. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.007
理论与研究

聚丙烯高温催化热解实验研究

作者信息 +

Experimental Study on High-Temperature Catalytic Pyrolysis of Polypropylene

Author information +
History +

摘要

为了研究不同热解温度和催化剂对聚丙烯(PP)热解产物的影响,分别对其气体产品和液体产品进行表征。结果表明:在700 ℃进行高温热解时所产生的CO2含量最少,可燃气体含量最多。CaO(5 g)原位催化热解时,H/C的值提升较为明显,为1.77;并且,此时有较多的芳香族转化为脂肪族。C(5 g)和CaO(5 g)分开异位催化热解时得到的烷烃和烯烃的总量最多,其液体产品更适合作为燃料。此外,PP在700 ℃热解时可以产生更多的可燃气体,有利于二次利用。C和CaO作为催化剂催化热解PP时能够使其产生更多的高质量热解液体产品。

Abstract

In order investigate the effects of different pyrolysis temperatures and catalysts on the pyrolysis products of polypropylene (PP), the gas and liquid products were characterized respectively. The results showed that the least amount of CO2 and the highest content of combustible gases were produced at the high temperature pyrolysis of 700 °C. The H/C ratio was significantly improved to 1.77 with the in-situ catalytic pyrolysis of CaO (5 g), and more aromatic compounds were converted into aliphatic ones at this time. When C (5 g) and CaO (5 g) were used separately for ex-situ catalytic pyrolysis, the total amount of alkanes and alkenes obtained was the highest, making the liquid products more suitable as fuels. Moreover, PP pyrolysis at 700 °C can produce more combustible gases, which is beneficial for secondary utilization. When C and CaO are used as catalysts in the catalytic pyrolysis of PP, more high-quality pyrolysis liquid products can be produced.

关键词

高温热解 / 聚丙烯 / 催化热解 / 液体产品

Key words

High temperature pyrolysis / PP / Catalytic pyrolysis / Liquid product

中图分类号

TQ316 / TQ325.14

引用本文

导出引用
李臻 , 周智 , 罗伟 , . 聚丙烯高温催化热解实验研究. 塑料科技. 2024, 52(08): 34-38 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.007
LI Zhen, ZHOU Zhi, LUO Wei, et al. Experimental Study on High-Temperature Catalytic Pyrolysis of Polypropylene[J]. Plastics Science and Technology. 2024, 52(08): 34-38 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.007

参考文献

1
王超.酚醛树脂动态硫化三元乙丙橡胶/聚丙烯热塑性弹性体的动力学研究[J].橡胶工业,2022,69(6):416-421.
2
邓义祥,雷坤,安立会,等.我国塑料垃圾和微塑料污染源头控制对策[J].中国科学院院刊,2018,33(10):1043-4049.
3
王峰.超高温和高温厌氧条件下聚乳酸塑料的降解[J].环境工程学报, 2018,12(1):305-309.
4
苗坚.新型可降解塑料标准化现状[J].中国标准化,2018,25(8):209-210.
5
林宏飞,苏丽梅,徐国涛,等.塑料垃圾热解炼油技术的研究进展[J].能源与节能,2018,23(3):27-32.
6
陈志坚,王峰.城市生活垃圾中PE/PP混合废塑料资源化利用研究[J].环境卫生工程,2016,24(4):50-51.
7
罗伟,樊军,郭开,等.Fe-絮凝降阻法处理后的印染污泥燃烧特性[J].环境科学研究,2018,31(2):353-359.
8
BAI B, LIU Y, WAN Q X, et al. Experimental investigation on gasification characteristics of plastic wastes in supercritical water[J]. Renewable Energy, 2019, 135: 32-40.
9
李厚洋.废弃橡胶/塑料共热制取液态油的实验研究[D].青岛:青岛大学,2015.
10
刘小红.玉米芯、煤矸石和塑料在添加剂作用下的共热解行为[D].临汾:山西师范大学,2017.
11
JIN Q M, WANG X B, LI S S,et al. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study[J]. Journal of the Energy Institute, 2019, 92(1): 108-117.
12
JIN Z C, YIN L J, CHEN D Z, et al. Co-pyrolysis characteristics of typical components of waste plastics in a falling film pyrolysis reactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2176-2184.
13
KIM Y M, JAE J H, KIM B S, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 Catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973.
14
曾化雨.塑料的处理技术与利用技术研究[J].云南化工, 2018, 46(2):25-26.
15
张喻,袁树杰.家电塑料外壳的热解特性与动力学分析[J].消防科学与技术,2018,37(7):874-878.
16
钱睿,韩健.北京城市生活垃圾处理转型新思路-垃圾热解气化技术[J].环境工程,2014,31(5):689-691.
17
郝清泉,刘宗鹏,朱建华,等.废塑料热解油中有机氯化物鉴定及加氢脱氯的热力学和反应机理[J].石油化工,2020,49(1):48-55.
18
SANTOS B P S, ALMEIDA D D, MARQUES M F, et al. Deradation of polypropylene and polyethylene wastes over HZSM-5 and USY zeolites[J]. Catalysis Letters, 2019, 149(3): 798-812.
19
CHI Y C, XUE J J, ZHUO J K, et al. Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41[J]. Science of the Total Environment, 2018, 633: 1105-1113.
20
SUPATTRA B, ANDREW J H, YUVARAT N, et al. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines[J]. Rsc Advance, 2019, 9(10): 5844-5857.
21
SHOGO K, JON A, PAULA H B, et al. Novel Ni-Mg-Al-Ca catalyst for enhanced hydrogen production for the pyrolysis-gasification of a biomass/plastic mixture[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 15-21.
22
TAN Y L, ABDULLAH A Z, HAMEED B H, et al. Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters[J]. Bioresource Technology, 2018, 264: 198-205.
23
TAN Y L, ABDULLAH A Z, HAMEED B H, et al. Product distribution of the thermal and catalytic fast pyrolysis of karanja (Pongamia pinnata) fruit hulls over a reusable silica-alumina catalyst[J]. Fuel, 2019, 245: 89-95.
24
LI T T, GUO F Q, LI X L, et al. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis[J]. Waste Management, 2018, 76: 544-554.
25
PUTUN E, ATES F, PUTUNE A E, et al. Catalytic pyrolysis of biomass in inert and steam atmospheres[J]. Fuel, 2008, 87: 815-824.

评论

PDF(1160 KB)

Accesses

Citation

Detail

段落导航
相关文章

/