低分子量聚酯增塑聚乳酸的结晶与力学性能研究

吴天宇, 白珊, 汪骏豪, 江晶晶, 孟晓宇, 叶海木

PDF(1848 KB)
PDF(1848 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (08) : 12-17. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.003
理论与研究

低分子量聚酯增塑聚乳酸的结晶与力学性能研究

作者信息 +

Crystallization and Mechanical Properties of Low Molecular Weight Polyester Plasticized Polylactic Acid

Author information +
History +

摘要

聚乳酸(PLA)是一种高模量、高强度的生物可降解热塑性聚酯。传统增塑剂通常是非生物可降解的,研究中采用低分子聚丁二酸己二醇酯(PHS)与左旋聚乳酸(PLLA)共混得到全降解体系。利用差示扫描量热仪、偏光显微镜及万能试验机对共混体系的相容性、结晶性能和力学性能进行了研究。结果表明:PLLA/PHS比值为100/0、95/5、90/10、85/15、80/20的结晶度分别为7.5%、8.7%、11.5%、14.1%、14.2%。随着PHS含量的增加,共混物的结晶度有所提高,表明PHS成功促进了PLLA结晶。此外,与纯PLLA相比,PLLA/PHS(80/20)的结晶速率增加10倍,半结晶时间缩短一半。共混体系的断裂伸长率从纯PLLA的不足10%提高至60%左右(PHS含量为20%),同时强度和模量略有降低。PHS含量增加,共混体系的弹性模量不断减小,由纯PLLA的2.25 GPa减小至PHS含量为20%时的1.86 GPa。

Abstract

Polylactic acid (PLA) is a high-modulus, high-strength biodegradable thermoplastic polyester used in the packaging, textile and medical industries. Conventional plasticizers are usually non-biodegradable, the study used low molecular polyhexanediol succinate (PHS) blended with poly (L-lactic acid) (PLLA) to obtain a fully degradable system. The compatibility, crystallization and mechanical properties of the blended system were investigated by differential scanning calorimetry, polarizing microscope and universal testing machine. The results show that the crystallinity of PLLA/PHS ratios of 100/0, 95/5, 90/10, 85/15, and 80/20 were 7.5%, 8.7%, 11.5%, 14.1%, and 14.2%, respectively. The crystallinity of the blends increased with increasing PHS content, indicating that PHS successfully promoted PLLA crystallization. In addition, the crystallization rate of 80/20 was increased 10-fold and the semi-crystallization time was halved compared to pure PLLA. The elongation at break of the blends increased from less than 10% for pure PLLA to about 60% (PHS content 20%), with a slight decrease in strength and modulus. The elastic modulus of the blends decreased continuously with the increase of the PHS content, from 2.25 GPa for pure PLLA to 1.86 GPa at 20% PHS content.

关键词

聚乳酸 / 聚酯 / 增塑 / 结晶性能 / 力学性能

Key words

Polylactic acid / Polyester / Plasticization / Crystallization properties / Mechanical properties

中图分类号

TQ323.4 / TB332

引用本文

导出引用
吴天宇 , 白珊 , 汪骏豪 , . 低分子量聚酯增塑聚乳酸的结晶与力学性能研究. 塑料科技. 2024, 52(08): 12-17 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.003
WU Tian-yu, BAI Shan, WANG Jun-hao, et al. Crystallization and Mechanical Properties of Low Molecular Weight Polyester Plasticized Polylactic Acid[J]. Plastics Science and Technology. 2024, 52(08): 12-17 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.003

参考文献

1
DOPPALAPUDI S, JAIN A, KHAN W, et al. Biodegradable polymers: An overview[J]. Polymers for Advanced Technologies, 2014, 25(5): 427-435.
2
YANG H S, YOON J S, KIM M N. Dependence of biodegradability of plastics in compost on the shape of specimens[J]. Polymer Degradation and Stability, 2005, 87(1): 131-135.
3
HOSHINO A, TSUJI M, ITO M, et al. Study of the aerobic biodegradability of plastic materials under controlled compost.Development of the screening test method for biodegradation by analysis of evolved carbon dioxide[C]//Proceedings of the 7th World Conference on Biodegradable Polymer and Plastics, Pisa, Italy, 2002.
4
GAN Z H, ABE H, DOI Y. Biodegradable poly (ethylene succinate) (PES). 1. Crystal growth kinetics and morphology[J]. Biomacro-molecules, 2000, 1(4): 704-712.
5
FUKUSHIMA K, ABBATE C, TABUANI D, et al. Biodegradation of poly(lactic acid) and its nanocomposites[J]. Polymer Degradation and Stability, 2009, 94(10): 1646-1655.
6
LUNT J. Large-scale production, properties and commercial applications of polylactic acid polymers[J]. Polymer Degradation and Stability, 1998, 59(1-3): 145-152.
7
SIRACUSA V, ROCCULI P, ROMANI S, et al. Biodegradable polymers for food packaging: A review[J]. Trends in Food Science & Technology, 2008, 19(12): 634-643.
8
TSUJI H, MIZUNO A, IKADA Y. Blends of aliphatic polyesters. III. Biodegradation of solution-cast blends from poly(L-lactide) and poly(ε-caprolactone)[J]. Journal of Applied Polymer Science, 1998, 70(11): 2259-2268.
9
GHORPADE V M, GENNADIOS A, HANNA M A. Laboratory composting of extruded poly (lactic acid) sheets[J]. Bioresource Technology, 2001, 76(1): 57-61.
10
K-L G HO, POMETTO III A L, GADEA-RIVAS A, et al. Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa State University compost rows[J]. Journal of Polymers and the Environment, 1999, 7(4): 173-177.
11
LIU L, LI S, GARREAU H, et al. Selective enzymatic degradations of poly (L-lactide) and poly (epsilon-caprolactone) blend films[J]. Biomacromolecules, 2000, 1(3): 350-359.
12
TSUJI H, TEZUKA Y, YAMADA K. Alkaline and enzymatic degradation of L‐lactide copolymers. II. Crystallized films of poly (L‐lactide‐co‐D‐lactide) and poly (L‐lactide) with similar crystallinities[J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(9): 1064-1075.
13
LI S, TENON M, GARREAU H, et al. Enzymatic degradation of stereocopolymers derived from L-, DL- and meso-lactides[J]. Polymer Degradation and Stability, 2000, 67(1): 85-90.
14
LIU H Z, ZHANG J W. Research progress in toughening modification of poly (lactic acid)[J]. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(15): 1051-1083.
15
RASAL R M, JANORKAR A V, HIRT D E. Poly (lactic acid) modifications[J]. Progress in Polymer Science, 2010, 35(3): 338-356.
16
LIU G C, HE Y S, ZENG J B, et al. In situ formed crosslinked polyurethane toughened polylactide[J]. Polymer Chemistry, 2014, 5: 2530-2539.
17
KULINSKI Z, PIORKOWSKA E. Crystallization, structure and properties of plasticized poly (L-lactide)[J]. Polymer, 2005, 46(23): 10290-10300.
18
MURARIU M, SILVA FERREIRA ADA, ALEXANDRE M, et al. Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances[J]. Polymers for Advanced Technologies, 2008, 19(6): 636-646.
19
PIORKOWSKA E, KULINSKI Z, GALESKI A, et al. Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol)[J]. Polymer, 2006, 47(20): 7178-7188.
20
GODWIN A D. Applied Plastics Engineering Handbook||Plasticizers[J]. 2017, DOI:10.1016/B978-0-323-39040-8.00025-0.
21
CICOGNA F, COIAI S, DE MONTE C, et al. Poly (lactic acid) plasticized with low‐molecular‐weight polyesters: Structural, thermal and biodegradability features[J]. Polymer International, 2017, 66(6): 761-769.
22
MARTIN O, AVéROUS L. Poly (lactic acid): Plasticization and properties of biodegradable multiphase systems[J]. Polymer, 2001, 42(14): 6209-6219.
23
BURGOS N, TOLAGUERA D, FIORI S, et al. Synthesis and characterization of lactic acid oligomers: Evaluation of performance as poly (lactic acid) plasticizers[J]. Journal of Polymers and the Environment, 2013, 22(2): 227-235.
24
BURGOS N, MARTINO V P, JIMÉNEZ A. Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid[J]. Polymer Degradation and Stability, 2013, 98(2): 651-658.
25
MARTINO V P, JIMéNEZ A, RUSECKAITE R A. Processing and characterization of poly (lactic acid) films plasticized with commercial adipates[J]. Journal of Applied Polymer Science, 2009, 112(4): 2010-2018.
26
MARTINO V P, RUSECKAITE R A, JIMÉNEZ A. Ageing of poly (lactic acid) films plasticized with commercial polyadipates[J]. Polymer International, 2009, 58(4): 437-444.
27
SANTOS E F, OLIVEIRA R V B, REIZNAUTT Q B, et al. Sunflower-oil biodiesel-oligoesters/polylactide blends: Plasticizing effect and ageing[J]. Polymer Testing, 2014, 39: 23-29.
28
LIM L T, AURAS R, RUBINO M. Processing technologies for poly (lactic acid)[J]. Progress in Polymer Science, 2008, 33(8): 820-852.
29
FUJIMAKI T. Processability and properties of aliphatic polyesters, 'BIONOLLE', synthesized by polycondensation reaction[J]. Polymer Degradation and Stability, 1998, 59(1/3): 209-214.

基金

国家自然科学基金青年科学基金项目(52203030)
中国石油大学(北京)科研基金(2462022BJRC008)

评论

PDF(1848 KB)

Accesses

Citation

Detail

段落导航
相关文章

/