纳米碳酸钙接枝硅烷偶联剂改性聚丙烯的分子动力学模拟

李亚莎, 庞梦昊, 王佳敏, 陈俊璋, 王璐敏

PDF(2121 KB)
PDF(2121 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (08) : 7-11. DOI: 10.15925/j.cnki.issn1005-3360.2024.08.002
理论与研究

纳米碳酸钙接枝硅烷偶联剂改性聚丙烯的分子动力学模拟

作者信息 +

Molecular Dynamics Simulation of Polypropylene Modified by Nanosized Calcium Carbonate Grafted Silane Coupling Agent

Author information +
History +

摘要

聚丙烯(PP)作为绿色环保可回收的热塑性材料,在高压电缆线路有很好的应用前景。但其热力学性能难以直接满足电缆线路的需求,需要对PP材料进行改性以满足性能要求。故基于分子模拟技术,搭建出PP掺杂质量分数为3%和7%纳米碳酸钙(nano-CaCO3)、掺杂接枝硅烷偶联剂的nano-CaCO3的PP复合材料模型,计算热性能与力学性能的数据,以微观角度分析其性能的变化。结果表明:接枝数为2的复合材料模型热性能与力学性能改善效果最佳,热性能方面,玻璃化转变温度(T g)值升高了49 K,自由体积分数下降了2.52%,热导率为最高;力学性能方面,其刚性降低最大,同时韧性的提升也最大。

Abstract

As a green and recyclable thermoplastic material, polypropylene (PP) has a good application prospect in high voltage cable line. However, its thermodynamic performance is difficult to directly meet the requirements of the cable line, so the PP material needs to be modified to meet the performance requirements. Therefore, based on molecular simulation technology, a nano-CaCO3/PP composite model with doping mass fraction of 3% and 7% nano-CaCO3 and doped grafted silane coupling agent was built, the data of thermal and mechanical properties were calculated, and the changes of its properties were analyzed from a microscopic perspective. The results show that the thermal and mechanical properties of the composites model with grafting number 2 improved the best. In terms of thermal properties, the glass transition temperature (T g) value increased by 49 K, the free volume fraction decreased by 2.52%, and the thermal conductivity was the highest. In terms of mechanical properties, the rigidity decreased the most, and the toughness improved the most.

关键词

分子模拟 / 聚丙烯 / 纳米碳酸钙 / 热稳定性 / 力学性能

Key words

Molecular simulation / Polypropylene / Nano-CaCO3 / Thermal stability / Mechanical properties

中图分类号

TQ325.14 / O643.1

引用本文

导出引用
李亚莎 , 庞梦昊 , 王佳敏 , . 纳米碳酸钙接枝硅烷偶联剂改性聚丙烯的分子动力学模拟. 塑料科技. 2024, 52(08): 7-11 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.002
LI Ya-sha, PANG Meng-hao, WANG Jia-min, et al. Molecular Dynamics Simulation of Polypropylene Modified by Nanosized Calcium Carbonate Grafted Silane Coupling Agent[J]. Plastics Science and Technology. 2024, 52(08): 7-11 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.08.002

参考文献

1
黄兴溢,张军,江平开.热塑性电力电缆绝缘材料:历史与发展[J].高电压技术,2018,44(5):1377-1398.
2
ROGER P,程宝家, MONTSE A,等.高乙烯含量和低门尼粘度三元乙丙橡胶在密封制品和绝缘材料中的应用[J].橡胶工业,2023,70(6):422-426.
3
赵健康,赵鹏,陈铮铮,等.高压直流电缆绝缘材料研究进展评述[J].高电压技术,2017,43(11):3490-3503.
4
何金良,彭琳,周垚.环保型高压直流电缆绝缘材料研究进展[J].高电压技术,2017,43(2):337-343.
5
于凡,闫轰达,林子春,等.非交联型聚丙烯基电缆料的制备及性能研究[J].绝缘材料,2022,55(9):35-39.
6
ZHOU Y, DANG B, WANG H M, et al. Polypropylene-based ternary nanocomposites for recyclable high-voltage direct-current cable insulation[J]. Composites Science and Technology, 2018, DOI:10.1016/J.COMPSCITECH.2018.06.022.
7
高鹏,赵儆,王钟颖,等.聚丙烯材料在电力电缆应用中的研究进展[J].绝缘材料,2023,56(8):1-10.
8
LEWIS T J. Nanometric dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 812-825.
9
周垚,党斌,胡军,等.纳米氧化镁颗粒对聚丙烯的性能调控[J].中国电机工程学报,2016,36(24):6619-6626, 6914.
10
李良钊,张秀芹,罗发亮,等.改性纳米碳酸钙-聚丙烯复合材料的结构与性能研究[J].高分子学报,2011(10):1218-1223.
11
CHATTERJEE A, MISHRA S. Novel synthesis with an atomized microemulsion technique and characterization of nano-calcium carbonate(CaCO3)/poly(methyl methacrylate) core-shell nanoparticles[J]. Particuology, 2013, 11(6): 760-767.
12
张翼清,初立秋,金剑,等.纳米碳酸钙改性聚丙烯的性能与增韧机理[J].合成树脂及塑料,2023,40(2):1-5.
13
邓传福,颜干才,杜年军.硅烷偶联剂改性纳米碳酸钙在PVC复合材料的应用研究[J].橡塑技术与装备,2023,49(11):13-17.
14
李亚莎,宋鹏,谢昊,等.硅烷偶联剂改性对SiO2/PI复合材料热力学与介电性能的影响[J].绝缘材料,2023,56(2):110-117.
15
李亚莎,陈俊璋,郭玉杰,等.聚丙烯/富勒烯复合材料热力学性能分子动力学模拟[J].工程塑料应用,2023,51(9):32-39.
16
李亚莎,王佳敏,夏宇,等.纳米ZnO改性聚丙烯热力学性能的分子动力学模拟[J].复合材料学报,2024,41(1):485-494.
17
曲家利,周丽霞,李齐方.分子动力学模拟结合实验精确预测聚苯乙烯玻璃化转变温度的研究[J].高分子通报,2020(10):66-72.
18
付一政,刘亚青,张丽燕,等.不同构型聚丙烯的玻璃化转变温度的分子模拟[J].分子科学学报,2009,25(1):1-4.
19
付一政,刘亚青,兰艳花.聚丙烯玻璃化转变温度的分子动力学模拟[J].高分子材料科学与工程,2009,25(10):53-56.
20
李因文,徐守芳,马登学.以玻璃化转变温度(T g)串联的高分子物理教学探究[J].高分子通报,2020(9):74-78.
21
向平,李豪祥,宋昊,等.压力与温度对炭黑填充丁苯橡胶复合材料动静态性质影响的分子模拟[J].高分子材料科学与工程,2021,37(3):93-99, 105.
22
张明,方鹏飞,刘黎明,等.HDPE/CaCO3纳米复合材料的自由体积及其界面特性[J].武汉大学学报:理学版,2003(5):601-604.
23
王霞,余栋,段胜杰,等.高压电缆附件设计环节中几个关键问题探讨[J].高电压技术,2018,44(8):2710-2716.
24
刘秀成,杨智,郭浩,等.金刚石/环氧树脂复合物热导率的分子动力学模拟[J].物理学报,2023,72(16):264-272.
25
LIU X J, RAO Z H. Molecular dynamics simulations on the heat and mass transfer of hypercrosslinked shell structure of phase change nanocapsules as thermal energy storage materials[J]. International Journal of Heat and Mass Transfer, 2019, 132: 362-374.
26
FUKUYAMA Y, SENDA M, KAWAI T, et al. The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conduc‐tivity of isotactic polypropylene[J]. Journal of Thermal Analysis and Calorimetry, 2014,117(3): 1397-1405.
27
COELHO L, OLIVEIRA D J, TAVARES F, et al. Role of attractive forces in self-diffusion and mutual diffusion in dense simple fluids and real substances[J]. Fluid Phase Equilibria, 2002,194-197:1131-1140.
28
LIU C T, TAUB A I, STOLOFF, N S, et al.High temperature ordered intermetallic alloys III[C]//Conference: 3. MRS symposium on high-temperature ordered intermetallic alloys, Boston, MA (USA),1988.
29
范欣愉,王伟,邓爵安,等.纳米碳酸钙对聚丙烯/碳纤维复合材料力学性能的影响[J].实验力学,2019,34(3):460-466.

基金

国家自然科学基金(51577105)

评论

PDF(2121 KB)

Accesses

Citation

Detail

段落导航
相关文章

/