生物可降解聚碳酸丁二醇酯改性的研究进展

尚祖明, 俞利生, 刘立鹏, 魏志勇

PDF(817 KB)
PDF(817 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (07) : 147-154. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.031
综述

生物可降解聚碳酸丁二醇酯改性的研究进展

作者信息 +

Research Progress in Modifications of Biodegradable Poly(butylene carbonate)

Author information +
History +

摘要

二氧化碳下游产物碳酸二甲酯的规模化生产极大程度地促进了可降解聚碳酸酯的生产和使用,可有效利用二氧化碳并缓解塑料污染。因此,文章对当前新型生物可降解脂肪族聚碳酸丁二醇酯(PBC)的改性研究进展进行综述,着重分析共聚单体分子结构(线型脂肪族、环状脂肪族、芳香族单体)以及共混相容性影响脂肪族聚碳酸酯PBC的热性能、结晶性能以及力学性能作用机制,并基于PBC基共聚碳酸酯以及PBC基共混材料的结构与性能关联体系对其适用领域和发展趋势进行展望。

Abstract

The production and application of biodegradable polycarbonate have been significantly facilitated by the scale production of dimethyl carbonate which is the downstream of carbon dioxide. Hence, the progress in current research of novel biodegradable aliphatic poly(butylene carbonate) (PBC) modification has been reviewed. The mechanism of monomer structure (i.e. linear aliphatic monomer, cyclic aliphatic monomer, and aromatic monomer) and blending compatibility effect on thermal properties, crystallization, and tensile properties of PBC were analyzed. In addition, the application and development were also prospected according to the structure-properties relationship of PBC-based co-polycarbonate and PBC-based blends.

关键词

脂肪族聚碳酸酯 / 化学共聚改性 / 物理共混改性

Key words

Aliphatic polycarbonate / Chemical copolymerization modification / Physical blending modification

中图分类号

TQ323.41

引用本文

导出引用
尚祖明 , 俞利生 , 刘立鹏 , . 生物可降解聚碳酸丁二醇酯改性的研究进展. 塑料科技. 2024, 52(07): 147-154 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.031
SHANG Zu-ming, YU Li-sheng, LIU Li-peng, et al. Research Progress in Modifications of Biodegradable Poly(butylene carbonate)[J]. Plastics Science and Technology. 2024, 52(07): 147-154 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.031

参考文献

1
XU J W, FENG E, SONG J. Renaissance of aliphatic polycarbonates: New techniques and biomedical applications[J]. Journal of Applied Polymer Science, 2014, DOI: 10.1002/app.39822.
2
MSTSUO J, SANDA F, ENDO T. Cationic ring-opening polymerization behavior of an aliphatic seven-membered cyclic carbonate, 1,3-dioxepan-2-one[J]. Macromolecular Chemistry and Physics, 1998, 199(1): 97-102.
3
TAMURA M, NAKAGAWA Y, TOMISHIGE K. Direct CO2 transformation to aliphatic polycarbonates[J]. Asian Journal of Organic Chemistry, 2022, DOI:10.1002/ajoc.202200445.
4
GU Y, MATSUDA K, NAKAYAMA A, et al. Direct synthesis of alternating polycarbonates from CO2 and diols by using a catalyst system of CeO2 and 2-furonitrile[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6304-6315.
5
TEMPELAAR S, MESPOUILLE L, COULEMBIER O, et al. Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation[J]. Chemical Society Reviews, 2013, 42(3): 1312-1336.
6
YAMAMOTO Y, KAIHARA S, TOSHIMA K, et al. High-molecular-weight polycarbonates synthesized by enzymatic rop of a cyclic carbonate as a green process[J]. Macromolecular Bioscience, 2009, 9(10): 968-978.
7
MEABE L, LAGO N, RUBATAT L, et al. Polycondensation as a versatile synthetic route to aliphatic polycarbonates for solid polymer electrolytes[J]. Electrochimica Acta, 2017, 237: 259-266.
8
ZHOU R, NIU Z L, JIA L, et al. CH3ONa-initiated two-step-transesterification of DMC (dimethyl carbonate) and α,ω-alkanediol for poly(alkylene carbonate)[J]. Inorganic Chemistry Communications, 2018, 90: 82-85.
9
LI L, LIU W X, CHEN R H, et al. Atom-economical synthesis of dimethyl carbonate from CO2: Engineering reactive frustrated lewis pairs on ceria with vacancy clusters[J]. Angewandte Chemie International Edition, 2022, DOI: 10.1002/anie.202214490.
10
KUMAR P, SRIVASTAVA V C, STANGAR U L, et al. Recent progress in dimethyl carbonate synthesis using different feedstock and techniques in the presence of heterogeneous catalysts[J]. Catalysis Reviews: Science and Engineering, 2021, 63(3): 363-421.
11
LIU L P, LU Y, XIA M Z, et al. Synthesis, thermal and barrier properties of biodegradable aliphatic polycarbonates with different chain lengths[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(19): 10163-10174.
12
LU Y, TU Z, CHENG Y, et al. Kilogram-scale production of biodegradable poly(butylene carbonate): Molecular weight dependence of physical properties and enhanced crystallization by nucleating agent[J]. Journal of Polymers and the Environment, 2022, 31(4): 1510-1524.
13
朱文祥,李春成,张栋,等.酯交换法制备可生物降解脂肪族聚碳酸酯及其应用的研究进展[J].高分子通报,2011(10):79-85.
14
ZHU W X, HUANG X, LI C C, et al. High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: Synthesis and characterization[J]. Polymer International, 2011, 60(7): 1060-1067.
15
ZHU W X, LI C C, ZHANG D, et al. Thermal degradation mechanism of poly(butylene carbonate)[J]. Polymer Degradation and Stability, 2012, 97(9): 1589-1595.
16
刘峰,翟刚,李建国,等.脂肪族聚碳酸酯的研究进展[J].石油化工,2013,42(5):568-576.
17
冉启鼎,陈学君,李建国,等.聚(碳酸丁二醇酯-co-三环癸烷二甲醇碳酸酯)的制备与性能[J].合成化学,2023,31(1):14-22.
18
WANG Z Q, BAI Y S, JIANG W, et al. Structure-activity correlations of calcined Mg-Al hydrocalcites for aliphatic polycarbonate synthesis via transesterification process[J]. Chinese Journal of Polymer Science, 2017, 35(1): 130-140.
19
WANG Z Q, YANG X G, LI J G, et al. Synthesis of high-molecular-weight aliphatic polycarbonates from, diphenyl carbonate and aliphatic diols by solid base[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424: 77-84.
20
WANG Z Q, YANG X G, LIU S Y, et al. Magnesium acetate used as an effective catalyst for synthesizing aliphatic polycarbonates via melt transesterification process[J]. Chemical Research in Chinese Universities, 2016, 32(3): 512-518.
21
王自庆,杨先贵,刘绍英,等.聚乙烯吡咯烷酮固载卤化锌催化酯交换法合成脂肪族聚碳酸酯[J].高分子学报,2016,12:1654-1661.
22
朱文祥,李春成,肖耀南,等.脂肪族聚碳酸酯的制备方法及其结构性能[J].石油化工,2016,45(3):257-263.
23
刘峰,杨先贵,李建国,等.碳酸二苯酯与1,4-丁二醇熔融酯交换缩聚合成聚(对亚丁基)碳酸酯的研究[J].高分子学报,2014,5:628-635.
24
LI Y, HAN C Y, YU Y C, et al. Morphological, thermal, rheological and mechanical properties of poly (butylene carbonate) reinforced by stereocomplex polylactide[J]. International Journal of Biological Macromolecules, 2019, 137(15): 1169-1178.
25
LIU L P, WANG B, LI C, et al. Development of high barrier biodegradable poly(butylene carbonate-co-terephthalate)-based blends with balanced mechanical properties by self-reactive compatibility and co-crystallization[J]. Polymer, 2023, DOI: 10.1016/j.polymer.2023.126130.
26
黄永兰,周鹏程.PBC生物可降解多孔膜的制备及其降解行为研究[J].塑料科技,2017,45(5):45-48.
27
ZHANG J, ZHU W X, LI C C, et al. Effect of the biobased linear long-chain monomer on crystallization and biodegradation behaviors of poly(butylene carbonate)-based copolycarbonates[J]. RSC Advances, 2015, 5(3): 2213-2222.
28
KIM H, JEON H, SHIN G, et al. Biodegradable nanocomposite of poly(ester-co-carbonate) and cellulose nanocrystals for tough tear-resistant disposable bags[J]. Green Chemistry, 2021, 23(6): 2293-2299.
29
QIU Z B, MIAO L Q, YANG W T. Crystallization and melting behavior of biodegradable poly(butylene succinate-co-butylene carbonate)[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(11): 1556-1561.
30
JIAO D H, CAI X D, SONG Q, et al. Biodegradable aliphatic poly(carbonate-co-ester)s containing biobased unsaturated double bonds: Synthesis and structure-property relationships[J]. Polymer Journal, 2022, 54(1): 47-55.
31
WINKLER M, LACERDA T M, MACK F, et al. Renewable polymers from itaconic acid by polycondensation and ring-opening-metathesis polymerization[J]. Macromolecules, 2015, 48(5): 1398-1403.
32
ZHENG L C, WANG Z D, WU S H, et al. Novel poly(butylene fumarate) and poly(butylene succinate) multiblock copolymers bearing reactive carbon-carbon double bonds: Synthesis, characterization, cocrystallization, and properties[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6147-6155.
33
ZHENG L C, WANG Z D, LI C C, et al. Synthesis, characterization and properties of novel linear poly(butylene fumarate) bearing reactive double bonds[J]. Polymer, 2013, 54(2): 631-638.
34
YU Y, XIONG H C, XIAO J Y, et al. High molecular weight unsaturated copolyesters derived from fully biobased trans-β-hydromuconic acid and fumaric acid with 1,4-butanediol: Synthesis and thermomechanical properties[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6859-6869.
35
YANG Z Y, CHEN C W, RWEI S P. Influence of asymmetric substituent group 2-methyl-1,3-propanediol on bio-based poly(propylene furandicarboxylate) copolyesters[J]. Soft Matter, 2020, 16(2): 402-410.
36
XIE H Z, WU L B, LI B G, et al. Modification of poly(ethylene 2,5-furandicarboxylate) with biobased 1,5-pentanediol: Significantly toughened copolyesters retaining high tensile strength and O2 barrier property[J]. Biomacromolecules, 2019, 20(1): 353-364.
37
WU Y H, WANG C C, CHEN C Y. Effect of the cyclic structure content on aliphatic polycarbonate-based polyurethane[J]. Polymer Journal, 2021, 53(6): 695-702.
38
HU H, ZHANG R Y, YING W B, et al. Sustainable and rapidly degradable poly(butylene carbonate-co-cyclohexanedicarboxylate): Influence of composition on its crystallization, mechanical and barrier properties[J]. Polymer Chemistry, 2019, 10(14): 1812-1822.
39
ZHANG M, LAI W Q, SU L L, et al. Effect of catalyst on the molecular structure and thermal properties of isosorbide polycarbonates[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 4824-4831.
40
YANG Z F, LIU L, AN H Z, et al. Cost-effective synthesis of high molecular weight biobased polycarbonate via melt polymerization of isosorbide and dimethyl carbonate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 9968-9979.
41
ZHU C L, LIU S Y, WANG Q Y, et al. Synthesis and properties of poly(butylene carbonate-co-spirocyclic carbonate)[J]. Chemical Research in Chinese Universities, 2019, 35(4): 729-734.
42
WITT U, MULLER R J, DECKWER W D. Studies on sequence distribution of aliphatic/aromatic copolyesters by high-resolution 13C nuclear magnetic resonance spectroscopy for evaluation of biodegradability[J]. Macromolecular Chemistry and Physics, 1996, 197(4): 1525-1535.
43
ZHANG J, ZHU W X, LI C C, et al. Aliphatic-aromatic poly(butylene carbonate-co-terephthalate) random copolymers: Synthesis, cocrystallization, and composition-dependent properties[J]. Journal of Applied Polymer Science, 2015, DOI: 10.1002/APP.41952.
44
HU H, ZHANG R Y, WANG J G, et al. Synthesis and structure-property relationship of biobased biodegradable poly(butylene carbonate-co-furandicarboxylate)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7488-7498.
45
CAI X D, YANG X G, ZHANG H, et al. Aliphatic-aromatic poly(carbonate-co-ester)s containing biobased furan monomer: Synthesis and thermo-mechanical properties[J]. Polymer, 2018, 134: 63-70.
46
PAEK K H, IM S G. Synthesis of a series of biodegradable poly(butylene carbonate-co-isophthalate) random copolymers derived from CO2-based comonomers for sustainable packaging[J]. Green Chemistry, 2020, 22(14): 4570-4580.
47
VAN DER WAL A, NIJHOF R, GAYMANS R J. Polypropylene-rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour[J]. Polymer, 1999, 40(22): 6031-6044.
48
CHEN F, ZHANG J W. A new approach for morphology control of poly(butylene adipate-co-terephthalate) and soy protein blends[J]. Polymer, 2009, 50(15): 3770-3777.
49
SUNDARARAJ U, MACOSKO C W. Drop breakup and coalescence in polymer blends: The effects of concentration and compatibilization[J]. Macromolecules, 1995, 28(8): 2647-2657.
50
WU D D, LI W, ZHAO Y, et al. Thermal, mechanical and rheological properties of biodegradable poly(propylene carbonate) and poly(butylene carbonate) blends[J]. Chinese Journal of Polymer Science, 2015, 33(3): 444-455.
51
WANG J, ZHENG L C, LI C C, et al. Fully biodegradable blends of poly(butylene succinate) and poly(butylene carbonate): Miscibility, thermal properties, crystallization behavior and mechanical properties[J]. Polymer Testing, 2012, 31(1): 39-45.
52
顾晓华,宋雪,曾鹏,等.全生物降解PLA/PBC薄膜的制备及性能研究[J].中国塑料,2015,29(2):49-52.

基金

国家重点研发计划项目(2023YFB4103300)
辽宁省科技厅项目(2022JH1/10400022)

评论

PDF(817 KB)

Accesses

Citation

Detail

段落导航
相关文章

/