
可生物降解的纳米CaCO3/BF/PHA/PE复合材料的制备及性能
吴静, 黄嘉园, 蓝峻峰, 陈燕萌, 叶有明, 韦周巧
可生物降解的纳米CaCO3/BF/PHA/PE复合材料的制备及性能
Preparation and Properties of Biodegradable Nano-CaCO3/BF/PHA/PE Composites
研究以聚乙烯(PE)为原料,聚羟基脂肪酸酯(PHA)、改性后的纳米CaCO3和甘蔗渣纤维(BF)为复合填料,通过熔融挤压和注塑成型制备纳米CaCO3/BF/PHA/PE复合材料。通过力学性能测试、傅里叶变换红外光谱(FTIR)分析、热重(TG)分析、扫描电子显微镜(SEM)等表征方法,考察PHA含量、改性纳米CaCO3及BF的最佳配比及其含量对复合材料内部结构和性能的影响。结果表明:5%PHA、5%BF以及5%纳米CaCO3时,复合材料的力学性能最佳,达到12.9 MPa;在此配比下,纳米CaCO3/BF/PHA/PE复合材料的最大热分解温度达到463 ℃,高于改性前复合材料热分解温度(453 ℃)。研究为可降解高分子材料的绿色发展提供了思路。
In this study, polyethylene (PE) was used as the raw material, and polyhydroxyalkanoate (PHA), modified nano-CaCO3 and bagasse fiber(BF) were used as the composite fillers, and the nano-CaCO3/BF/PHA/PE composites were prepared by melt extrusion and injection molding. The effects of the optimal ratios of PHA, modified nano-CaCO3 and BF and their contents on the internal structure and properties of the composites were investigated by mechanical property tests, Fourier transform infrared spectroscopy (FTIR) analysis, thermogravimetric (TG) analysis, scanning electron microscopy (SEM) and other characterization methods. The results show that with 5% PHA, 5% BF, and 5% nano-CaCO3, the mechanical properties of the composites were optimal at 12.9 MPa, and the maximum thermal decomposition temperature of the nano-CaCO3/BF/PHA/PE composites reached 437 ℃ at this ratio, which was higher than the thermal decomposition temperature (453 ℃) of the composites before modification. The study provides ideas for the green development of degradable polymer materials.
复合材料 / 聚羟基脂肪酸酯 / 纳米碳酸钙 / 甘蔗渣纤维
Composites / Polyhydroxyalkanoate / Calcium carbonate nanoparticles / Bagasse fiber
TB332 / TQ325.1+2
1 |
刘曼,丁琼,谭陶然.PE/PLA可降解塑料薄膜的制备与性能表征[J].塑料科技, 2020,48(10):71-74.
|
2 |
陶炫旭,曹长林,朱珂郁,等.废旧PE/PP共混体系的增容改性研究进展[J].塑料科技,2022,50(2):107-110.
|
3 |
杨喜英,张文才,赵志新.纳米碳酸钙/废旧聚乙烯功能化复合改性沥青性能影响及机理研究[J].中国塑料,2023,37(10):85-92.
|
4 |
徐杰,李广富,付栋梁,等.PE-LD/PE-HD/CSW的共混改性及发泡性能研究[J].中国塑料,2023,37(6):31-36.
|
5 |
聂颖,燕丰.纳米碳酸钙的生产工艺及改性技术进展[J].化工文摘, 2007(6):57-60.
|
6 |
杨萍.纳米碳酸钙的改性及其在聚乙烯膜中的应用研究[D].长沙:湖南大学,2020.
|
7 |
杨婷,叶有明,徐秋菊.纳米CaCO3对PP/BF复合材料性能影响[J].工程塑料应用,2021,49(5):44-48.
|
8 |
陈荣源,杨晓壮,安佳豪,等.多壁碳纳米管改性PLA/PE复合材料的结构与性能[J].工程塑料应用,2021,49(12):1-7.
|
9 |
孙静,熊礼龙,刘乐.聚乙烯塑料光降解研究进展[J].塑料科技,2022,50(7):120-123.
|
10 |
陈伟清,方海洪.纳米碳酸钙表面处理对PVC/CaCO3性能的影响[J].纳米科技,2013,12(6):47-51.
|
11 |
秦建华,董明青,彭涛.碳酸钙对超高分子质量聚乙烯改性的研究[J].现代盐化工,2017,44(4):44-45.
|
12 |
邓亚玲,李于文成,许煜,等.聚乙烯表面接枝改性及应用的研究进展[J].表面技术,2023,52(9):108-124.
|
13 |
严成.热塑性塑料聚乙烯性能的改进研究[D].锦州:辽宁工业大学,2015.
|
14 |
田键,刘旻,胡攀,等.我国碳酸钙产业发展与资源梯级高值高效利用思考[J].矿产保护与利用,2020,40(6):109-116.
|
15 |
杨长友,叶有明,杨婷,等.纳米CaCO3/BF对PE复合材料性能影响[J].工程塑料应用,2022,50(11):146-150.
|
16 |
刘雅奇,李普旺,王超,等.几种热带植物纤维在复合材料领域的研究进展[J].化工新型材料,2022,50(3):39-44.
|
17 |
杨雷,邓金营,邓长征,等.纳米碳酸钙的合成、表面改性以及应用[J].广东化工,2019,46(5):124-125.
|
18 |
|
19 |
李懋王,吕江南,易永健,等.可生物降解材料聚羟基脂肪酸酯(PHA)的合成与应用概述[J].环境科学与管理,2009,34(12):144-148.
|
20 |
|
21 |
张成杰,左义凤,孙钟岑,等.塑料拉伸强度测量结果的不确定度评定[J].化学分析计量,2009,18(4):16-17.
|
22 |
姜侃,陈海玲,张吉雷,等.塑料悬臂梁冲击强度检测能力验证[J].理化检验-化学分册,2017,53(11):791-794.
|
23 |
何伟平,陈全斌,苏小健,等.傅里叶变换红外光声光谱在甘蔗渣纤维分离研究中的应用[J].广西化工,1992,21(2):39-41.
|
24 |
王娜,杨柳,夏伟伟,等.PLA/PHA复合材料结晶性能和力学性能研究[J].塑料科技,2016,44(11):59-62.
|
25 |
邓长勇,张秀成.聚乳酸/酯化纤维素/纳米CaCO3复合材料的制备与表征[J].中国塑料,2011,25(1):42-46.
|
26 |
伊阳,陶鑫.纳米CaCO3在塑料改性中的应用研究[C]//2005年中国工程塑料复合材料技术研讨会.泰安:中国工程塑料工业协会加工应用专业委员会,2005.
|
27 |
张翼清,初立秋,金剑,等.纳米碳酸钙改性聚丙烯的性能与增韧机理[J].合成树脂及塑料,2023,40(2):1-5.
|
28 |
孙雪,杨宇晨,范方宇.甘蔗渣微晶纤维素特性及其对可得然胶溶液流变特性的影响[J].应用化工,2023,52(2):393-397.
|
29 |
洪浩群,郭权南,邱楚濠,等.甘蔗渣显微结构对聚乳酸/甘蔗渣复合材料结构与性能的影响[J].材料导报,2018,32(增刊1):220-225.
|
/
〈 |
|
〉 |