用于汽车轻量化领域的碳纤维增强尼龙66复合材料的制备与研究

王峰, 张家辉, 孙文革, 高素静, 程莉, 雷皓

PDF(1015 KB)
PDF(1015 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (07) : 101-104. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.022
加工与应用

用于汽车轻量化领域的碳纤维增强尼龙66复合材料的制备与研究

作者信息 +

Preparation and Research of Carbon Fiber Reinforced Nylon 66 Composites for Automotive Light Weighting

Author information +
History +

摘要

为了改善尼龙66(PA66)的力学性能以及热稳定性,使其在汽车轻量化领域应用更加广泛,在PA66基体中掺杂5%~20%的碳纤维(CF)。结果表明:相比未改性的PA66材料,掺杂15% CF的PA66复合材料具有较好的综合性能。PA66/15%CF的拉伸强度为180 MPa,提升了177%;弹性模量为19 867 MPa,提高7.1倍;弯曲强度为262 MPa,提升212%;弯曲模量为15 867 MPa,提高6.4倍。PA66/15%CF的冲击强度为12.7 kJ/m2,提升49.4%。PA66/15%CF复合材料的质量保留率为22.8%,材料的热稳定性显著提高。研究表明,经CF改性增强的PA66复合材料具有用于汽车轻量化领域的潜力,以15%的掺杂量较好。

Abstract

In order to improve the mechanical properties and thermal stability of nylon 66 (PA66) and make it widely used in the field of automotive lightweight, 5%~20% carbon fiber (CF) was doped in PA66 matrix. The results show that the PA66 composite doped with 15% CF has better comprehensive properties than the unmodified PA66 material. The universal testing machine test shows that the tensile strength of PA66/15% CF is 180 MPa, increased by 177%, and the elastic modulus is 19 867 MPa, increased by 7.1 times. The bending strength is 262 MPa, which is increased by 212%, and the bending modulus is 15 867 MPa, increased by 6.4 times. The impact strength of PA66/15%CF is 12.7 kJ/m2, which increases by 49.4%. The mass residual rate of PA66/15%CF composite is 22.8%, and the thermal stability of the material is significantly improved. The study indicates that CF-modified PA66 composites have the potential for use in the field of automotive light weighting, with a 15% doping amount being preferable.

关键词

尼龙66 / 碳纤维 / 力学性能 / 热稳定性

Key words

PA66 / Carbon fiber / Mechanical properties / Thermal stability

中图分类号

TB332

引用本文

导出引用
王峰 , 张家辉 , 孙文革 , . 用于汽车轻量化领域的碳纤维增强尼龙66复合材料的制备与研究. 塑料科技. 2024, 52(07): 101-104 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.022
WANG Feng, ZHANG Jia-hui, SUN Wen-ge, et al. Preparation and Research of Carbon Fiber Reinforced Nylon 66 Composites for Automotive Light Weighting[J]. Plastics Science and Technology. 2024, 52(07): 101-104 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.022

参考文献

1
李京晓.基于主成分分析的山西省低碳经济发展水平影响因素研究[J].节能,2023,42(4):64-66.
2
王小霞.道路机动车尾气污染物排放量的预测与控制措施研究[D].西安:长安大学,2012.
3
CALOGERO A E, VIGNERA S L, CONDORELLI R A, et al. Environmental car exhaust pollution damages human sperm chromatin and DNA[J]. Journal of Endocrinological Investigation, 2010, DOI:10.1007/BF03346722.
4
李磊.纤维复合材料在汽车轻量化领域的研究应用[J].智能城市,2021,7(11):167-168.
5
李伟斌,孟迎,韩艳辉.我国尼龙66的产业化现状与发展建议[J].合成纤维,2021,50(8):1-3.
6
高鹏堂.塑性材料在汽车配件轻量化发展中的应用研究[J].内燃机与配件,2021(19):39-40.
7
FRIEDRICH K. Carbon fiber reinforced thermoplastic composites for future automotive applications[C]//AIP Conf Proc, 2016, DOI: 10.1063/1.4949575.
8
彭斐.改性工程塑料在汽车发动机周边上的应用[J].汽车与配件,2014(10):46-49.
9
宁冲冲.PTT/PF改性PA66的制备及其吸水性能研究[D].南京:南京航空航天大学,2014.
10
黄惠龙.长玻纤增强尼龙66复合材料的研究[D].广州:华南理工大学,2013.
11
刘金鹏.汽车零部件的塑料化趋势及尼龙产品的目标市场定位[D].天津:天津大学,2013.
12
龚莉雯.改性尼龙6微孔发泡材料的制备及其性能研究[D].宁波:宁波大学.
13
曲日华.高性能纤维增强尼龙66复合材料的制备及应用研究[D].沈阳:沈阳工业大学,2020.
14
吴汾,杜宁宁.汽车高性能尼龙复合材料的研发[J].江苏科技信息,2015(7):45-48, 57.
15
REZAEI F, YUNUS R, IBRAHIM N A, et al. Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet[J]. Polymer-Plastics Technology and Engineering, 2008, 47(4):351-357.
16
张彩霞,徐秀兵,王居兰,等.玻纤增强尼龙66产品的制备与研究[J].广东化工,2012,39(15):111-112, 150.
17
孙伟.双螺杆反应挤出制备碳纤维增强尼龙6复合材料的研究[D].青岛:青岛大学,2009.
18
刘树文,邱军,刘文君,等.碳纤维增强尼龙66低磨耗复合材料制备及性能研究[J].塑料工业,2021,49(9):34-38, 48.
19
迟恩义.附生结晶增强尼龙66/石墨烯复合材料力学性能的机理研究[D].宁波:宁波大学,2018.
20
王丽霖,林雪.纳米碳纤维改性混凝土的力学性能及微观机理[J].混凝土与水泥制品,2020(1):51-54.
21
于敬晖.碳纤维复合材料在汽车结构件中的应用研究进展[J].纤维复合材料,2023,40(4):71-75.
22
曲日华,王立岩,关冲,等.碳纤维增强尼龙66复合材料的热性能[J].塑料,2020,49(6):45-49.
23
李菁菁,张宋茂苗,李刚,等.耐高温碳纤维树脂基复合材料的制备与研究[J].辽宁化工,2023,52(6):812-814.

评论

PDF(1015 KB)

Accesses

Citation

Detail

段落导航
相关文章

/