
玻璃纤维增强PA66复合材料的制备和性能研究
陈飞飞, 谢靖
玻璃纤维增强PA66复合材料的制备和性能研究
Preparation and Performance Study of Glass Fiber Reinforced PA66 Composites
研究通过KH550改性玻璃纤维(GF)制备改性玻璃纤维(mGF),旨在增强PA66复合材料的力学及绝缘性能,探究mGF掺量对PA66复合材料力学性能及绝缘性能的影响。结果表明:随着mGF掺量的增加,复合材料的密度呈现先上升后降低的趋势;拉伸强度、弹性模量及缺口冲击强度均呈现先上升后下降的趋势。当mGF掺量为20%时,PA66复合材料的各项力学性能的增强效果最好,分别较纯PA66复合材料的拉伸强度、弹性模量及缺口冲击强度增加了13.38%、19.23%和19.59%。PA66复合材料在直流和交流下的电场击穿强度均呈现先上升后下降的趋势,同时PA66复合材料的介电常数呈现先降低后升高的趋势,且在掺量为30%时达到最低;PA66复合材料的体积电阻率呈现先上升后下降的趋势,且在掺量为20%时达到最高,为3.34×1013 Ω·m。添加20% KH550改性的GF能够增强PA66复合材料的力学及绝缘性能。该材料可用作电气断路器材料。
The study aims to prepare modified glass fiber (mGF) through KH550 modified glass fiber (GF), aiming to enhance the mechanical and insulation properties of PA66 composites, and explore the effects of mGF content on the mechanical and insulation properties of PA66 composites. The results show that as the mGF content increases, the density of the composites shows a trend of first increasing and then decreasing. The tensile strength, elastic modulus, and notch impact strength all show a trend of first increasing and then decreasing. When the mGF content is 20%, the enhancement effect of various mechanical properties of PA66 composites is the strongest, with an increase of 13.38%, 19.23%, and 19.59% compared to the tensile strength, elastic modulus, and notch impact strength of pure PA66 composites, respectively. The electric field breakdown strength of PA66 composites shows a trend of first increasing and then decreasing under both DC and AC conditions. At the same time, the dielectric constant of PA66 composites shows a trend of first decreasing and then increasing, and reaches its lowest point at a dosage of 30%. The volume resistivity of PA66 composites shows a trend of first increasing and then decreasing, and reaches its highest value at a dosage of 20%, which is 3.34×1013 Ω·m. The mechanical and insulation properties of PA66 composites can be enhanced by adding 20% KH550 modified GF, which can be applied in the preparation of electrical circuit breaker materials. This material can be used as an electrical circuit breaker material.
电气断路器 / PA66 / 增强复合材料 / 力学性能 / 绝缘性能
Electrical circuit breaker / PA66 / Reinforced composites / Mechanical properties / Insulation property
TB332 / TQ323.6
1 |
吕玮,王文杰,方太勋,等.混合式高压直流断路器试验技术[J]高电压技术,2018,44(5):1685-1691.
|
2 |
周洋.新型塑料材料在电气断路器中的应用分析[J].塑料科技,2021,49(7):100-102.
|
3 |
|
4 |
|
5 |
道恩高材研制出高强度无卤阻燃增强尼龙66[J].塑料科技,2013,41(2):87.
|
6 |
魏馨,朱瑞淑,胡红梅,等.PA6/PA66共聚酰胺纤维的制备及结构性能研究[J].产业用纺织品,2023,41(1):22-29.
|
7 |
石建江,陈宪宏,肖鹏.阻燃玻璃纤维增强尼龙66的研制及其应用[J].塑料应用,2006,34(1):35-37.
|
8 |
周长汶,付培根,刘敏,等.高模扁平玻璃纤维增强PA66复合材料的应用研究[J].玻璃纤维,2023(5):25-30.
|
9 |
司晓闯,袁端鹏,李凯,等.玻璃纤维增强PA66复合材料作为高压开关设备绝缘件材料的可行性分析[J].中国塑料,2021,35(9):75-80.
|
10 |
江风,施燕琴,陈思,等.玻璃纤维改性尼龙复合材料现状[J].塑料,2023,52(6):100-104.
|
11 |
刘建萍,康鹏,高达利,等.玻璃纤维增强聚丙烯复合材料表面"浮纤"的形成原因[J].塑料工业,2022,50(11):69-75.
|
12 |
李迁然.玻璃纤维增强环氧树脂E51复合材料性能的研究[D].太原:太原工业学院 2014.
|
13 |
谢颖,毛晨,马立懿,等.玻璃纤维的表面改性及其聚乳酸复合材料的热性能分析[J].塑料工业,2023,51(12):36-42.
|
14 |
王振华,杨正,琚澳迎,等.不同增容剂对玻璃纤维增强聚甲醛复合材料性能的影响研究[J].中国塑料,2022,36(1):53-60.
|
15 |
沈琪斌,王波,王海滨.玻璃纤维增强环氧树脂复合材料的绝缘性能和力学性能研究[J].塑料科技,2023,51(7):18-22.
|
16 |
|
17 |
杨杰.聚苯硫醚树脂及其应用[M].北京:化学工业出版社,2005:100-113.
|
18 |
郝名扬,潘复生,曾庆文,等.树脂基体对玻纤单向复合材料力学性能的影响[J].聚氨酯工业,2019,34(6):19-22.
|
19 |
南洪尧,李岳,李志刚.玻璃纤维增强环氧树脂力学性能研究[J].湘潭大学自然科学学报,2018,40(3):46-50.
|
20 |
张磊,孙清,王虎长,等.E玻璃纤维增强环氧树脂基复合材料力学性能试验研究[J].电力建设,2010,31(9):118-121.
|
21 |
黄鑫.碳纤维/玻璃纤维混合增强环氧树脂基复合材料阻尼性能及力学性能研究[D].哈尔滨:哈尔滨工程大学,2022.
|
22 |
何宗誉,张本成,卢福聪,等.基于细观力学的短玻璃纤维/环氧树脂复合材料有效弹性模量预测[J].中国科技论文,2022,17(7):807-814.
|
23 |
刘希从,刘春为,孙刚.SiC/Al复合材料的电阻率[J].宇航学报,1990(2):82-87.
|
24 |
杨建新,杨威,寇长珍.碳纳米管/玻璃纤维填充导热环氧树脂的高温介电特性研究[J].高压电器,2018,54(12):122-128.
|
25 |
李方舟,张翀,尹立,等.PA46/玻璃纤维复合材料的制备与性能研究[J].绝缘材料,2016,49(9):37-41.
|
26 |
丁浩亮,汤炜,魏赛,等.短切玻璃纤维增强聚醚醚酮承力支架研制[J].宇航材料工艺,2018,48(5):73-77.
|
27 |
刘亚兰,申士杰,李龙,等.偶联剂处理玻璃纤维表面的研究进展[J].绝缘材料,2010,43(4):34-39.
|
/
〈 |
|
〉 |