高温多次固化对复合材料力学性能影响

成艳娜, 张梦雨, 刘训新, 袁潇洒, 林雨辰, 元振毅

PDF(1676 KB)
PDF(1676 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (07) : 75-78. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.016
加工与应用

高温多次固化对复合材料力学性能影响

作者信息 +

Effect of Multiple Curing at High Temperature on Mechanical Properties of Composites

Author information +
History +

摘要

采用T800级高韧性碳布及碳带预浸料、T800级玻璃纤维预浸料、芳纶与石英混编预浸料制造层压板,探究高温高压多次固化对层压板力学性能的影响。连续经历5次高温高压固化,检测层压板孔隙缺陷、弯曲强度、剪切强度。结果表明:4种不同预浸料层压板的内部质量合格。随着固化次数的增加,T800级高韧性碳布层压板的弯曲强度下降最明显,T800级玻璃纤维预浸料层压板的剪切强度下降最明显。但是4种预浸料层压板的弯曲强度和剪切强度下降幅度均小于10%。芳纶与石英混编预浸料固化5次后的剪切强度最低值比理论指标低1.64%,其余材料的剪切强度均高于各层压板性能要求。

Abstract

The laminate was manufactured with T800 grade high toughness carbon cloth and carbon ribbon prepreg, T800 grade glass fiber prepreg, aramidon and quartz hybrid prepreg. The influence of high temperature and high pressure multiple curing on the mechanical properties of laminates was investigated. After five times of high temperature and high pressure curing, the laminate pore defects, bending strength and shear strength were tested. The results show that the internal quality of four different prepreg laminates is qualified. With the increase of curing times, the bending strength of T800 grade high toughness carbon cloth laminate decreases most obviously, and the shear strength of T800 grade glass fiber prepreg laminate decreases most obviously. However, the bending strength and shear strength of the four kinds of prepreg laminates decrease by less than 10%. The minimum shear strength of aramid and quartz hybrid prepreg after curing for five times is 1.64% lower than the theoretical index, and the shear strength of other materials is higher than the property requirements of each laminate.

关键词

碳纤维 / 玻璃纤维 / 多次固化 / 孔隙缺陷 / 弯曲强度 / 剪切强度

Key words

Carbon fiber / Glass fiber / Multiple curing / Pore defects / Bending strength / Shear strength

中图分类号

TB332

引用本文

导出引用
成艳娜 , 张梦雨 , 刘训新 , . 高温多次固化对复合材料力学性能影响. 塑料科技. 2024, 52(07): 75-78 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.016
CHENG Yan-na, ZHANG Meng-yu, LIU Xun-xin, et al. Effect of Multiple Curing at High Temperature on Mechanical Properties of Composites[J]. Plastics Science and Technology. 2024, 52(07): 75-78 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.016

参考文献

1
王玲,贾普荣,王文贵,等.含铺层拼接层合板的剪切强度[J].实验力学,2009,24(5):408-411.
2
付景丽,李璐璐,蔡骏文.用于整体化结构成型的复合材料工装设计和制造技术研究[J].航空制造技术,2019,62(17):46-49, 57.
3
杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-17.
4
SCHOENHOLZ C, ZOBEIRY N. An accelerated process optimization method to minimize deformations in composites using theory-guided probabilistic machine learning[J]. Composites Part A: Applied Science and Manufacturing, 2024, DOI: 10.1016/j.compositesa.2023.107842.
5
ZHAO C, WANG X F, LIU X Y, et al. Study of integral hat-stiffened composite structures manufactured by automated fiber placement and co-curing process[J]. Composite Structures, 2020, DOI: 10.1016/j.compstruct.2020.112427.
6
程文礼,王燕,姚锋,等.复合材料机身筒段典型结构整体成型技术研究[J].纤维复合材料,2022,39(4):125-130.
7
MORETTI L, OLIVIER P, CASTANIÉ B, et al. Experimental study and in-situ FBG monitoring of process-induced strains during autoclave co-curing, co-bonding and secondary bonding of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2021, DOI: 10.1016/j.compositesa.2020.106224.
8
王雪明,谢富原.复合材料整体成型过程分层缺陷动态扩展研究[J].测控技术,2021,40(5):27-31.
9
孟翠翠,徐小伟,何煜文,等.大尺寸泡沫填充帽型复合材料加筋壁板成型工艺研究[J].航空兵器,2023,30(2):59-63.
10
胡晓睿.复合材料整体结构成形降低飞行器制造成本[J].国防制造技术,2011(1):32-34.
11
徐伟伟,文蔚,李娅媛,等.不同工艺条件对M40J级碳纤维/双马树脂基复合材料层间性能的影响[J].塑料工业,2022,50(12):76-81.
12
白江波,熊峻江,李雪芹,等.复合材料机翼整体成型技术研究[J].复合材料学报,2011,28(3):185-191.
13
王国建,孙耀宁,姜宏,等.湿热-高温循环老化对环氧乙烯基酯树脂/玻璃纤维复合材料性能影响[J].工程塑料应用,2020,48(9):121-126, 132.
14
樊俊铃,马国庆,焦婷,等.温度和湿度对碳纤维增强复合材料老化影响研究综述[J].航空科学技术,2023,34(9):1-13.
15
胡紫阳,王永庆,李雪.多次固化对复合材料性能的影响[J].材料导报,2018,32(增刊2):273-275.
16
MAMALIS D, FLOREANI C, BRÁDAIGH C M. Influence of hygrothermal ageing on the mechanical properties of unidirectional carbon fibre reinforced powder epoxy composites[J]. Composites Part B: Engineering, 2021, DOI: 10.1016/j.compositesb.2021.109281.
17
MOUZAKIS D E, ZOGA H, GALIOTIS C. Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs)[J]. Composites Part B: Engineering, 2008, 39(3): 467-475.
18
隋晓东,梁成利,刘文博,等.高温老化对碳纤维增强双马来酰亚胺树脂基复合材料力学性能的影响研究[J].纤维复合材料,2011,28(1):21-23.
19
周益星,李博,李成龙,等.多次固化对复合材料力学性能的影响及机理研究[J].塑料科技,2022,50(4):60-63.
20
PEREIRA G C, LEBOULLUEC P, LU W T, et al. Spring-back behavior on L-shaped composite structures: A statistical analysis of angular recovery as a function of time and residual cure[J]. Composites Part A: Applied Science and Manufacturing, 2019, DOI: 10.1016/j.compositesa.2019.105491.
21
PEREIRA G C, YOSHIDA M I, LEBOULLUEC P, et al. Application of artificial intelligence models for predicting time-dependent spring-back effect: The L-shape case study[J]. Composites Science and Technology, 2020, DOI: 10.1016/j.compscitech.2020.108251.
22
周世强.碳纤维环氧预浸料储放老化及其对复合材料性能影响研究[D].上海:东华大学,2016.
23
喻琳峰,任全彬,张爱华,等.某大型固体发动机T800碳纤维壳体封头结构仿真分析和优化设计[J].固体火箭技术,2023,46(4):611-620.
24
倪洪江,李军,邢宇,等.航空发动机用T800级碳纤维增强聚酰亚胺复合材料制备及性能[J].复合材料科学与工程,2022(5):46-51.
25
LIU C C, WANG P Y, DANG J W, et al. Experimental and numerical analysis of composite fuselage panel impacted by tire burst debris under airworthiness clause[J]. International Journal of Impact Engineering, 2024, DOI: 10.1016/j.ijimpeng.2023.104805.
26
刘钧天,陈萍,于晶晶,等.孔隙率对环氧/T800级碳纤维复合材料力学性能影响[J].工程塑料应用,2022,50(10):101-106.
27
李伟,张晨乾,叶宏军,等.固化工艺参数对国产T800增强高韧性复合材料性能的影响[J].复合材料科学与工程,2020(6):98-104.

基金

中国博士后科学基金(2022MD713799)
陕西省重点研发计划(2023-YBGY-387)

评论

PDF(1676 KB)

Accesses

Citation

Detail

段落导航
相关文章

/