
冷冻解冻法制备多孔聚乙烯醇材料及性能分析
王娟
冷冻解冻法制备多孔聚乙烯醇材料及性能分析
Preparation of Porous Polyvinyl Alcohol Materials by Freeze-Thaw Method and Property Analysis
采用冷冻解冻法制备多孔聚乙烯醇/β-磷酸三钙/碳纳米管(PVA/β-TCP/CNT)复合材料,探究CNT添加量对其孔隙率及力学性能的影响。结果表明:添加适量的CNT可以有效降低PVA/β-TCP/CNT多孔复合材料的孔径和孔隙率,保障多孔聚乙烯醇复合材料形成更致密的多孔结构。CNT添加量为0.3%~0.5%时,复合材料的孔隙率最低,约为82%。添加CNT后,PVA/β-TCP/CNT多孔复合材料的弹性模量及拉伸强度均显著提升,PVA/β-TCP/CNT多孔复合材料的溶胀度均明显下降。CNT添加量为0.3%时,复合材料的弹性模量及拉伸强度达到2 245.08 MPa和6.61 MPa。制备的PVA/β-TCP/CNT多孔复合材料能够满足医疗生物材料聚合物支架的要求。
Porous polyvinyl alcohol/β-Tricalcium phosphate/carbon nanotubes (PVA/β-TCP/CNT) composites were prepared by freeze-thaw method, and the effects of CNT addition on the porosity and mechanical properties of CP/CNT composite materials were investigated. The results show that adding an appropriate amount of CNT can effectively reduce the pore size and porosity of PVA/β-TCP/CNT porous composites ensure the formation of a denser porous structure in the porous polyvinyl alcohol composites. When the CNT addition amount is 0.3%~0.5%, the porosity of the composites is the lowest, about 82%. After adding CNT, the elastic modulus and tensile strength of PVA/β-TCP/CNT porous composites were significantly improved, and the swelling of PVA/β-TCP/CNT porous composites is significantly decreased. When the CNT addition is 0.3%, the elastic modulus and tensile strength of the composites reach 2 245.08 MPa and 6.61 MPa, respectively. The prepared PVA/β-TCP/CNT porous composites can meet the requirements of medical biomaterial polymer scaffolds.
Freeze-thaw method / Porous polyvinyl alcohol material / Porosity / Mechanical property
TB332 / TQ325.9
1 |
吕家益,姚庆强,朱颐申.碳纳米管在组织工程修复中的作用与优势[J].中国组织工程研究,2023,27(25):4093-4100.
|
2 |
徐应科.3D打印负载聚多巴胺微球的聚己内酯/β磷酸三钙支架表征及生物相容性研究[D].海口:海南医学院,2023.
|
3 |
宋美玲,李征宇,艾子政,等.不同比例羟基磷灰石/β-磷酸三钙涂层支架修复骨缺损[J].中国组织工程研究,2023,27(30):4809-4816.
|
4 |
庞传远,柯胜海.PVA水溶性薄膜材料在包装领域的应用分析[J].包装工程,2019,40(1):112-116.
|
5 |
于雯霞,党春蕾,何艺琳,等.聚乙烯醇共混薄膜研究进展[J].中国塑料,2022,36(11):164-173.
|
6 |
李鹏珍,柳巨澜,蒋红光,等.聚乙烯醇水溶膜的研究进展[J].安徽化工,2023,49(5):32-37.
|
7 |
袁景.多孔β-磷酸三钙骨组织工程支架负载抗结核药物缓释系统的3D打印制备及初步研究[D].兰州:甘肃中医药大学,2015.
|
8 |
龚雪.β-磷酸三钙/聚乙烯醇人工角膜支架生产工艺与应用研究[D].深圳:深圳大学,2020.
|
9 |
王婧.3D打印载淫羊藿苷的PVA/β-TCP复合支架成血管性能的研究[D].长春:吉林大学,2022.
|
10 |
吴莹,王欢,袁斌,等.聚乙烯醇/β-磷酸三钙复合材料的微型注塑加工研究[J].塑料工业,2021,49(5):38-42.
|
11 |
王欢,陈宁,王琪.β-磷酸三钙与聚乙烯醇的相互作用及其对聚乙烯醇热性能和力学性能的影响[J].高等学校化学学报,2014,35(8):1810-1815.
|
12 |
欧阳君君,周莉.多孔β-磷酸三钙/壳聚糖/聚乙烯醇复合水凝胶的制备与性能[J].应用化学,2012,29(9):995-999.
|
13 |
康军沛.β-磷酸三钙粉体及其复合PVA水凝胶骨软骨修复材料的制备与研究[D].广州:华南理工大学,2016.
|
14 |
马艾丽,何晓红,郭莹,等.碳纳米管改性涂层复合材料的制备设计及性能研究[J].中国胶粘剂,2023,32(9):16-20.
|
15 |
宋涛.3D打印个性化聚己内酯/β-磷酸三钙/碳纳米管复合多孔骨组织支架的制备及其性能评价[D].青岛:青岛大学,2020.
|
16 |
代耀.碳纳米管和纳米羟基磷灰石增强聚己内酯骨支架的性能研究[D].南昌:南昌大学,2018.
|
17 |
卢志华,程杰,孙康宁.碳纳米管取向对HA/CNTs复合材料力学性能的影响[J].材料导报,2010,24(18):28-31.
|
18 |
|
19 |
|
20 |
朱秀芳,卢国兴,马书香,等.CNT对树脂基和金属基材料的力学增强性能对比[J].北京理工大学学报,2023,43(11):1187-1196.
|
21 |
|
22 |
吴湾湾,刘平,陈小红,等.三维互通CNTs/Cu复合材料的制备及力学性能研究[J].有色金属材料与工程,2020,41(4):1-7.
|
23 |
黄利.丝素蛋白仿生组织工程支架的成型、结构与性能研究[D].上海:东华大学,2020.
|
24 |
张敏,杨鱼,李成涛,等.快速吸水响应性PVA/HEC多孔复合材料的制备及性能[J].精细化工,2017,34(5):505-512.
|
/
〈 |
|
〉 |