滑石粉填充聚丙烯共混物的性能研究

蒲桃红, 李柱凯, 马静月, 陈国夫

PDF(1389 KB)
PDF(1389 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (07) : 58-61. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.012
理论与研究

滑石粉填充聚丙烯共混物的性能研究

作者信息 +

Study on the Properties of Talc Filled Polypropylene Blends

Author information +
History +

摘要

聚丙烯(PP)塑料是1种性能优异、应用广泛的材料。在PP塑料的二次回收利用过程中,其力学强度、热稳定性和抗老化性能仍有待进一步提高。因此,研究采用废弃的PP塑料,并通过简单的熔融塑化和再冷却的方法制备了滑石粉填充的PP共混物。添加滑石粉后,滑石粉中的—OH基团和PP碳链上的—CH3基团之间形成了氢键,使滑石粉填充的PP共混物的力学性能较原始PP塑料显著提升。当滑石粉的含量为10%时,其断裂能相比原始的PP塑料提高了近142%。因此,在二次回收利用PP塑料的过程中添加适量的滑石粉有助于进一步提升PP共混物的性能。

Abstract

Polypropylene (PP) is a widely used material with excellent properties. The mechanical strength, thermal stability, wettability, and anti-aging properties of PP can be further improved, especially for secondary recycled PP. Therefore, the study aimed to improve the properties of PP by waste PP and preparing talc-filled PP blends via a simple melt plasticization and re-cooling process. Through the addition of talc, hydrogen bonds were formed between the —OH groups in talc and the —CH3 groups on the PP carbon chain, resulting in a significant improvement in mechanical properties compared to virgin PP. The addition of 10% talc increased the fracture energy of the blends by nearly 142%. Therefore, the addition of talc in the secondary recycling of PP can effectively improve the performance of PP blends and enhance their sustainability in practical applications.

关键词

聚丙烯塑料 / 滑石粉 / 废物资源化 / 抗老化 / 可持续应用

Key words

Polypropylene / Talc / Resourcefulness of waste / Ageing resistance / Sustainable applications

中图分类号

TB332 / TQ325.14

引用本文

导出引用
蒲桃红 , 李柱凯 , 马静月 , . 滑石粉填充聚丙烯共混物的性能研究. 塑料科技. 2024, 52(07): 58-61 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.012
PU Tao-hong, LI Zhu-kai, MA Jing-yue, et al. Study on the Properties of Talc Filled Polypropylene Blends[J]. Plastics Science and Technology. 2024, 52(07): 58-61 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.012

参考文献

1
朱娇娇,刘慧,王为木,等.微塑料及其复合污染对水生生物的毒性与生态风险研究进展[J].环境科学学报,2023,43(12):125-136.
2
LI X, WANG J, YI G, et al. From waste plastic to artificial lotus leaf: Upcycling waste polypropylene to superhydrophobic spheres with hierarchical micro/nanostructure[J]. Applied Catalysis B: Environmental, 2024, DOI:10.1016/j.apcatb.2023.123378.
3
李志宝,侯继宗,宋欢欢,等.聚丙烯塑料表面涂料的研究[J].现代涂料与涂装,2023,26(12):1-3, 7.
4
司芳芳,黄颖为.云母粉及高密度聚乙烯对废旧聚丙烯塑料的改性研究[J].中国塑料,2017,31(8):112-116.
5
EAGAN J M, XU J, DI GIROLAMO R, et al. Combining polyethylene and polypropylene: Enhanced performance with PE/i PP multiblock polymers[J]. Science, 2017, 355(6327): 814-816.
6
SHIRVANIMOGHADDAM K, BALAJI K V, YADAV R, et al. Balancing the toughness and strength in polypropylene composites[J]. Composites Part B: Engineering, 2021, DOI: 10.1016/j.compositesb.2021.109121.
7
DAS A, MARNOT A E C, FALLON J J, et al. Material extrusion-based additive manufacturing with blends of polypropylene and hydrocarbon resins[J]. ACS Applied Polymer Materials, 2019, 2(2): 911-921.
8
JIANG J, YANG L, JIA C, et al. Lightweight and high mechanical properties of in situ poly(ethylene terephthalate) reinforced polypropylene composite foams by chemical foam injection molding[J]. Industrial & Engineering Chemistry Research, 2023, 62(49): 21498-21508.
9
NAGUIB H E, PARK C B, PANZER U, et al. Strategies for achieving ultra low-density polypropylene foams[J]. Polymer Engineering & Science, 2002, 42(7): 1481-1492.
10
周凯,刘勇.改性煤矸石制备聚丙烯塑料填料[J].塑料,2015,44(1):69-71, 76.
11
ZHENG T, PILLA S. Melt processing of cellulose nanocrystal-filled composites: Toward reinforcement and foam nucleation[J]. Industrial & Engineering Chemistry Research, 2020, 59(18): 8511-8531.
12
ZHAO J, QIAO Y, WANG G, et al. Lightweight and tough PP/talc composite foam with bimodal nanoporous structure achieved by microcellular injection molding[J]. Materials & Design, 2020, DOI: 10.1016/j.matdes.2020.109051.
13
WANG G, ZHAO G, DONG G, et al. Lightweight and strong microcellular injection molded PP/talc nanocomposite[J]. Composites Science and Technology, 2018, 168: 38-46.
14
KUZMANOVIĆ M, DELVA L, CARDON L, et al. Relationship between the processing, structure, and properties of microfibrillar composites[J]. Advanced Materials, 2020, DOI: 10.1002/adma.202003938.
15
YANG C, WANG G, ZHAO J, et al. Lightweight and strong glass fiber reinforced polypropylene composite foams achieved by mold-opening microcellular injection molding[J]. Journal of Materials Research and Technology, 2021, 14: 2920-2931.
16
SHAJARI S, ARJMAND M, PAWAR S P, et al. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites[J]. Composites Part B: Engineering, 2019, 165: 662-670.
17
肖毓秀,朱严瑾,周庆涛,等.滑石粉/白炭黑/EPDM复合材料的制备及性能研究[J].云南化工,2023,50(11):45-47.
18
NATH D, PAL A K, MISRA M, et al. Biodegradable blown film composites from bioplastic and talc: Effect of uniaxial stretching on mechanical and barrier properties[J]. Macromolecular Materials and Engineering, 2023, DOI: 10.1002/mame.202300214.
19
田春香.滑石粉等的表面改性及其填充PP的研究[D].大连:大连理工大学,2006.
20
邹勇,张晓明,王振,等.超细滑石粉在PP及PVC领域的应用研究[J].中国非金属矿工业导刊,2023(6):73-75, 79.
21
王利萍,史志辉.PP/EPDM/滑石粉三元体系的增韧机理研究[J].石河子科技,2020(4):26-28.
22
刘乐文,程书文,姜向新.极性润滑剂对滑石粉填充PP性能的影响[J].工程塑料应用,2020,48(5):149-155.
23
田维生,张会云.微细滑石粉在阻燃电缆PVC护套料中的应用[J].塑料助剂,2017(5):45-48.
24
LIU J, MENG X, DONG F, et al. Highly stretchable and sensitive Ti3C2Tx MXene/sodium alginate/acrylamide hydrogel for flexible electronic sensors[J]. ACS Applied Polymer Materials, 2022, 4(11): 8216-8226.
25
俞飞,吴国峰,陈延安.不同粒径滑石粉及含量对聚丙烯材料性能的影响[J].合成材料老化与应用,2023,52(3):14-16, 118.
26
雷泽一川,周京,王铎.表面改性滑石粉填充对PP管材性能的影响[J].云南化工,2023,50(3):33-35.

基金

广安市2023年“揭榜挂帅制”科技项目(2023JBGS01)

评论

PDF(1389 KB)

Accesses

Citation

Detail

段落导航
相关文章

/