氮化硼改性石墨烯制备PVC复合材料及其抗腐蚀性能的研究

潘宣成, 唐泽君

PDF(951 KB)
PDF(951 KB)
塑料科技 ›› 2024, Vol. 52 ›› Issue (07) : 43-46. DOI: 10.15925/j.cnki.issn1005-3360.2024.07.009
理论与研究

氮化硼改性石墨烯制备PVC复合材料及其抗腐蚀性能的研究

作者信息 +

Preparation of PVC Composites with Boron Nitride Modified Graphene and Study of Its Corrosion Resistance

Author information +
History +

摘要

使用具有优异的化学稳定性和力学性能的二维无机材料氮化硼(BN)通过液相超声剥离的方式对石墨烯进行改性,制备氮化硼/石墨烯(GBN)复合填料来制备PVC复合材料,进一步研究GBN填料掺量对PVC复合材抗腐蚀性能的影响。结果表明:PVC复合材料的接触角在GBN掺量为1.0%时得到明显提升,为156°。随着GBN掺量的不断增加,PVC复合材料的失重率及物理尺寸变化率均不断降低,其中PVC复合材料失重率于掺量为1.5%时达到最低,为8.98%,而尺寸变化率超过1.0%时,下降幅度趋于平缓。此外,GBN掺量为1.0%时,PVC复合材料的拉伸应力保持率和拉伸应变保持率分别为156%和82%;PVC复合材料的色差变化逐渐降低,且当GBN掺量超过1.0%后,PVC复合材料的色差变化趋于平稳,当在掺量为1.0%时,PVC复合材料的色差为7.8。研究为制备具有较强耐腐蚀性能的PVC复合材料提供参考。

Abstract

Two-dimensional inorganic material boron nitride(BN) with excellent chemical stability and mechanical properties was used to modify graphene by liquid-phase ultrasonic exfoliation, and prepared boron nitride/graphene (GBN) composite fillers to prepare PVC composites. Furthermore, the effects of GBN filler content on the corrosion resistance of PVC composites were studied. The results showed that the contact angle of PVC composites was significantly improved at a GBN content of 1.0%, reaching 156°. As the GBN content increases, the weight loss rate and physical size change rate of PVC composites continuously decrease. Among them, the weight loss rate of PVC composites reaches the lowest at a dosage of 1.5%, which is 8.98%. When the size change rate exceeds 1.0%, the downward decrease tends to be gentle. In addition, when the GBN content is 1.0%, the tensile stress retention and tensile strain retention of PVC composites are 156% and 82%, respectively. The color difference of PVC composites gradually decreases, and when the GBN content exceeds 1.0%, the color difference of PVC composites tends to stabilize. When the content is 1.0%, the color difference of PVC composites is 7.8. The research provides a reference for the preparation of PVC composites with strong corrosion resistance.

关键词

氮化硼 / 石墨烯 / 聚氯乙烯 / 耐腐蚀

Key words

Boron nitride / Graphene / PVC / Corrosion resistance

中图分类号

TB33

引用本文

导出引用
潘宣成 , 唐泽君. 氮化硼改性石墨烯制备PVC复合材料及其抗腐蚀性能的研究. 塑料科技. 2024, 52(07): 43-46 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.009
PAN Xuan-cheng, TANG Ze-jun. Preparation of PVC Composites with Boron Nitride Modified Graphene and Study of Its Corrosion Resistance[J]. Plastics Science and Technology. 2024, 52(07): 43-46 https://doi.org/10.15925/j.cnki.issn1005-3360.2024.07.009

参考文献

1
仇永宏.聚氯乙烯(PVC)材料预混及其设备研究进展[J].橡塑技术与装备,2023,49(6):38-41.
2
孟维庆.设备优化改型提升在聚氯乙烯生产中的应用[J].中国氯碱,2023(10):21-24.
3
朱雪丹,姚亚丽,马利利,等.聚氯乙烯基超疏水材料的制备及应用研究进展[J].化工进展,2022,41(7):3676-3688.
4
胡青青,刘创华,梁晓蕾,等.高防腐蚀性能氮化硼/含氟聚丙烯酸酯复合材料涂层[J].浙江师范大学学报:自然科学版,2022,45(4):411-418.
5
GONG P, LI L H, LI M H, et al. Significantly thermally conductive cellulose composite film with graphene/boron nitride heterojunction structure achieved by combustion synthesis[J]. Composites Communications, 2023, DOI: 10.1016/j.coco.2023.101596.
6
邢伟义,陈亮,周慕天,等.氮化硼/石墨烯复合导热填料的制备及其环氧树脂复合材料阻燃导热绝缘性能的研究[J].中国科学:化学,2023,53(2):207-216.
7
周文豪.氮化硼改性氧化石墨烯有机钝化膜制备及耐腐蚀性能研究[D].天津:河北工业大学,2023.
8
吴仲孝,孟扬,苏娟娟,等.氮化硼表面改性及其对PVC膜耐碱性能的影响[J].浙江理工大学学报:自然科学版,2021,45(6):736-743.
9
张欣伟,安义岩,尚鑫,等.接线套管聚碳酸酯复合材料热老化下力学性能和色差关联分析[J].塑料工业,2023,51(12):139-145.
10
MA X, LEE N H, OH H J, et al. Morphology control of hexagonal boron nitride by a silane coupling agent[J]. Journal of Crystal Growth, 2011, 316(1): 185-190.
11
HOD O. Graphite and hexagonal boron-nitride have the same interlayer distance. Why?[J]. Journal of Chemical Theory and Computation, 2012, 8(4): 1360-1369.
12
KOSTOGLOU N, POLYCHRONOPOULOU K, REBHOLZ C. Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets[J]. Vacuum, 2015, 112: 42-45.
13
黄鹏,裴克梅.改性氮化硼/水性环氧导热绝缘涂层的制备及性能研究[J].中国胶粘剂,2023,32(10):16-22.
14
朱桂生,黄燕,冯玉祥,等.壳聚糖基氮化硼吸附剂的制备及其吸附脱硫性能研究[J].煤炭与化工,2023,46(9):149-155.
15
黄凯,廖卫华,徐雯雯,等.石墨烯/钡铁氧体复合材料的制备及微波吸收性能的综合实验设计[J].大学物理实验,2024,37(1):41-44.
16
LIU H Q, QIU M H, TANG C X, et al. Enhance interfacial deposition kinetics to achieve dendrite‐free zinc anodes by graphene oxide modified boron nitride nanosheets[J]. Electrochimica Acta, 2022, DOI: 10.1016/j.electacta.2021.139776.
17
赵涵博.电场辅助机械力制备石墨烯、氮化硼/环氧树脂复合材料及其性能研究[D].开封:河南大学,2020.
18
林骏.改性石墨烯/氮化硼填充环氧导热复合材料的制备及研究[D].泉州:华侨大学,2022.
19
LI K, NIE X, JIANG J. Plasticizing effect of epoxidized fatty acid ester and a math model of plasticizer[J]. Journal of Biobased Materials and Bioenergy, 2020, 14(1): 9-19.
20
VAZQUEZ A, FORESTI M L, MORAN J I, et al. Extraction and production of cellulose nanofibers[M]//Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume C: Polymer Nanocomposites of Cellulose Nanoparticles, 2015.
21
付诗禧,陈志辉,彭玉培,等.软质聚氯乙烯电缆材料的抗老化与耐腐蚀性能研究[J].塑料科技,2023,51(5):62-65.
22
江涛,黄一丹.氮化硼纤维的制备技术及其研究发展现状和发展趋势及开发应用[J].现代技术陶瓷,2023,44(4):274-302.
23
徐文文,能英,郭少云.硬质聚氯乙烯自然老化的变色行为与分子结构变化[J].高分子学报,2017(8):1374-1381.

评论

PDF(951 KB)

Accesses

Citation

Detail

段落导航
相关文章

/