
交联高密度聚乙烯结构与性能研究
孙小杰, 任月庆, 陈兰兰
交联高密度聚乙烯结构与性能研究
Study on Structure and Properties of Crosslinked High Density Polyethylene
交联改性是聚乙烯改性的重要方法之一。文章系统研究了交联程度和树脂结构对交联高密度聚乙烯(XHDPE)的流变特性、交联特性、结晶性能和力学性能等影响。结果表明:交联剂质量分数由0增大至1.2%,XHDPE的最大储能模量(G'max)和凝胶含量增大,损耗因子最小值(tanδ min)逐渐减小。随着交联剂含量的增加,XHDPE的结晶度和晶粒尺寸降低,结晶能力降低。加入交联剂后,XHDPE的拉伸屈服强度逐渐降低,断裂伸长率先增大后减小,冲击强度显著改善。相同交联剂含量下,提高基础树脂分子量,XHDPE的储能模量逐渐增大,大分子网络黏弹性增大。高分子量HDPE的断裂伸长率达到最大时,其所需交联剂含量更低。高分子量的HDPE基础树脂有利于交联样品的力学性能提升。
Crosslinking modification is one of the important methods of polyethylene modification. The effects of crosslinking degree and resin structure on rheological properties, crosslinking properties, crystallization properties and mechanical properties of crosslinked high density polyethylene (XHDPE) were studied. The results show that when the mass fraction of crosslinking agent increases from 0 to 1.2%, the maximum energy storage modulus (G'max) and gel content of XHDPE increase, and the minimum value of loss factor (tanδ min) decreases gradually. With the increase of the content of crosslinking agent, the crystallinity and grain size of XHDPE decreases, and the crystallization capacity decreases. After the addition of crosslinking agent, the tensile yield strength of XHDPE decreases gradually, the elongation at break increases first and then decreases, and the impact strength increases significantly. With the same content of crosslinking agent, the energy storage modulus of XHDPE and the viscoelasticity of macromolecular network increase gradually with the increase of molecular weight of base resin. When the elongation at break of high molecular weight HDPE reaches the maximum, the content of crosslinking agent required is lower. High molecular weight HDPE base resin is beneficial to improve the mechanical properties of crosslinked samples.
Crosslinked high density polyethylene / Resin structure / Crystal characteristics / Mechanical properties
TQ325.1+2
1 |
高克京,周京生,荔栓红,等.高密度聚乙烯的可控微交联反应[J].石油化工,2023,52(2):176-181.
|
2 |
程凯旋,杨加美,丁珮珊,等.高密度聚乙烯垫片的非线性压缩-回弹性能测试[J].武汉工程大学学报,2021,43(4):468-72.
|
3 |
张鹏,朱珍珍,朱裕国,等.高密度聚乙烯的结构与性能分析[J].化工技术与开发,2021,50(9):31-33, 40.
|
4 |
戴佳桐.输油管用耐热HDPE材料研究[D].北京:北京化工大学,2018.
|
5 |
刘丽英.热可逆交联聚乙烯的制备及性能研究[D].大连:大连理工大学,2021.
|
6 |
岑静芸,蔡伟.提高HDPE大中空专用料抗冲击性能的技术研究[J].广东化工,2020,47(9):55-57.
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
刘群,钟蔚华,张勇,等.过氧化物交联超高分子量聚乙烯的结构与性能[J].工程塑料应用,2018,46(11):48-52, 57.
|
15 |
刘玉峰,胡天辉,朱志勇,等.交联体系对超高摩尔质量聚乙烯性能的影响[J].塑料工业,2017,45(1):21-4.
|
16 |
|
17 |
黄安民,朱志勇,刘婷,等.导热交联超高摩尔质量聚乙烯耐磨复合材料的研究[J].塑料工业,2014,42(11):18-21.
|
18 |
梁伟忠,高宇,郭川东,等.蒙脱土/废弃XLPE/HDPE复合材料的摩擦磨损性能研究[J].塑料工业,2021,49(6):143-147, 164.
|
19 |
|
20 |
|
21 |
|
22 |
李亚飞,孙小杰,孙苗苗,等.滚塑用耐低温冲击阻燃交联聚乙烯的研制[J].塑料科技,2021,49(2):36-39.
|
23 |
|
24 |
|
25 |
张忠峰,刘顺城,王克俭,等.过氧化物交联增韧改性PE-HD/POE共混物[J].中国塑料,2020,34(10):1-5
|
26 |
刘顺城.化学交联及弹性体协同增韧高密度聚乙烯[D].北京:北京化工大学,2021.
|
27 |
|
28 |
|
29 |
任月庆,董侠,陈学连,等.成型方法对交联聚乙烯冲击性能与结构的影响[J].中国塑料,2017,31(10):83-88.
|
/
〈 |
|
〉 |